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Abstract—In this study, a three-layer artificial neural 
network(ANN) model was constructed to predict the explosion 
heat (Q) of aluminized explosive. Elemental composition was 
employed as input descriptors and explosion heat was used as 
output. The dataset of 24 aluminized explosives was randomly 
divided into a training set (17) and a prediction set (7). After 
optimized by adjusting various parameters, the optimal condition 
of the neural network was obtained. Simulated with the final 
optimum neural network, calculated explosion heat shows good 
agreement with experimental values. It is shown here ANN is able 
to produce accurate predictions of the explosion heat of 
aluminized explosive. 
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I.  INTRODUCTION 

Since aluminized explosive has the characteristics of high 
explosion heat and temperature and post-detonation burning 
effect, it is widely used in rocket propellants, underwater 
munitions, air armaments, mine blasting, geological survey and 
even lunar development. 

Explosion heat (Q) is one of the most important detonation 
parameters for aluminized explosive. To predict the explosion 
heat accurately is significant to the study of new aluminized 
explosive. There are usually two methods to calculate Q: (1) It 
can be obtained using Hess Law based on the detonation 
products. In this method, the detonation products are usually 
defined based on experience, which is difficult for a novice. 
And also the formation heat of reactants and products should be 
used, which must be calculated or measured beforehand. (2) It 
also can be calculated using eigenvalue of explosion heat of the 
components, which is demarcated by experiments. Based on 
the mass percentages of the components, explosion heat of 
aluminized explosive is obtained using additive method. 
However this method can not be used for the components of 
which eigenvalue of explosion heat has not been demarcated. 
So it is necessary to find a simple and comprehensive 
prediction method of explosion heat. 

Recently, the ANN modeling technique has been used 
successfully in prediction of impact sensitivity [1-3] and 
detonation parameters of pure explosives [4]. In this paper, the 
ANN was employed to investigate the relationship between 
explosion heat and elemental composition of aluminized 
explosive (CaHbNcOdAle). The main goal of this study is to 
set up an ANN model of prediction of explosion heat. 

II. ANALYSIS OF THE INPUT DESCRIPTORS 

What is known as a critical aspect to construct an ANN 
model is the selection of suitable input descriptors. The 
descriptors should reflect the influencing factors of explosion 
heat as much as possible. 

In simple terms, explosion heat, namely, constant volume 
combustion heat, refers to the heat released in combustion 
process of explosive or propellant.  In this process, a redox 
reaction occurs between the combustion elements (C, H, N, Al) 
and the oxidation element (O). Simultaneously, it releases heat. 
Therefore, it is reasonable to represent explosion heat as a 
function of the elemental composition (a, b, c, d, e) of the 
aluminized explosive. That is to say, elemental composition 
should be selected as the input descriptor. 

A close examination of experimental results shows that 
explosion heat has a a close correlation with the loading density 
(ρ). Hence, loading density is also a necessary input descriptor. 

As discussed above, a,b,c,d,e and ρ were selected as the 
input descriptors to construct an ANN model. 

III. ANN MODEL FOR EXPLOSION HEAT 

ANN modeling, which originated about 60 years ago, is a 
parallel processing technique inspired by the desire to emulate 
human learning activity [5]. It is a highly self-organized, self-
adapted, and self-trainable approximator, with high associative 
memory and strong non-linear mapping ability as well. By 
simulating the human neural system from micro-mechanism, 
ANN model can simulate complex and non-linear problems by 
employing a different number of non-linear processing 
elements, i.e. the nodes or neurons [6,7]. 

Usually, the network has one input layer, one hidden layer 
and one output layer. The input layer is consisted by the input 
descriptors. Information from the input layer is then processed 
in the course of the hidden layer, following output vector is 
computed in the output layer. In this study, the vector of input 
layer is X=(x1, x2,…,x6)=(a, b, c, d, e, ρ), and the output is 
Y=(y1)=(Q).  

In developing an ANN model, the available dataset (Table 
1) was randomly divided into two sets, a training set (17) and a 
prediction set (7). They were used for training of the network 
and verifying the generalization capability of the network, 
respectively. Various kinds of ANN approaches had been tried 
in this work. As a result, the linear ANN with Least Mean 
Square Error (LMSE) learning algorithm is the most accurate 
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ANN model to predict explosion heat. A schematic description 
of the linear ANN is given in Fig. 1. 

TABLE I.  PARAMETERS USED AS INPUT DESCRIPTORS 

No. a b c d e 
Q 

[kJ/kg]
1 13.381 26.191 26.477 25.649 0 5770 
2 12.512 23.992 22.961 22.961 0 5490 
3 14.931 25.736 21.61 21.61 0 4690 
4 15.211 29.172 26.589 25.882 0 5066 
5 27.717 19.798 23.757 11.879 3.704 5307 
6 21.557 15.398 18.478 9.239 11.111 6519 
7 20.422 25.006 26.765 21.486 0 5020 
8 27.554 27.206 25.354 6.599 0 5150 
9 24.843 42.113 22.146 0 0 4850 
10 13.107 26.417 20.529 20.529 0 6443 
11 9.845 19.765 17.557 17.557 0 7046 
12 6.888 13.776 13.776 13.776 14.815 8368 
13 10.94 21.88 21.88 21.88 3.667 6357 
14 11.021 22.042 22.042 22.042 1.481 5586 
15 10.67 21.34 21.34 21.34 2.444 6006 
16 10.089 20.178 20.178 20.178 3.926 6236 
17 9.819 19.638 19.638 19.638 4.926 6415 
18 8.874 17.747 17.747 17.747 7 6704 
19 8.644 17.288 17.288 17.288 11.111 8317 

20 11.345 22.69 22.69 22.69 3.704 6366 

21 9.995 19.989 19.989 19.989 7.407 6760 
22 8.644 17.288 17.288 17.288 11.111 7709 
23 7.293 14.587 14.587 14.587 14.815 8299 
24 13.478 26.696 25.653 25.392 0 5663 

 

 
FIGURE I.  THE STRUCTURE OF LINEAR ANN 

IV. RESULTS AND DISCUSSION 

As discussed above, a 5-9-1 ANN model was set up for 
predicting explosion heat of aluminized explosive. The 
predicted results by ANN model, experimental data and the 
calculated values by empirical equation of eigenvalue of 
explosion heat (EE) [8] for 7 aluminized explosives are 
presented in Table 2. 

As can been seen in Table 2, the ANN model shows good 
ability for explosion heat of aluminized explosives prediction. 
The maximum error of predicted values is 3.83%. It is 
remarkable that the present ANN method is exceedingly simple, 
there is no need to use any experimental or calculated 
parameters. The input descriptors (a, b, c, d, e) can be easily 
obtained once the explosive formula confirmed. 

TABLE II.  COMPARISON OF P PREDICTED USING ANN MODEL AND 
MEASURED VALUES 

No
. 

Q 
(Exp.) 
[kJ/kg] 

Q  
(ANN) 
[kJ/kg] 

Dev.  
(ANN) 

[%] 

Q  
 (EE) 

[kJ/kg] 

Dev. 
(EE) 
[%] 

1 5770 5549 -3.83 5770 -3.83 
2 5490 5645 2.83 5793 5.52 
7 5020 4981 -0.78 5211 3.80 
11 7046 7040 -0.08 7386 4.83 
13 6357 6321 -0.56 6357 0.00 
23 8299 8479 2.17 -- -- 
24 5663 5524 -2.45 -- -- 
Note：-- Lack of necessary eigenvalue of explosion heat to calculate.

As can been seen in Table 2, the ANN model shows good 
ability for explosion heat of aluminized explosives prediction. 
The maximum error of predicted values is 3.83%. It is 
remarkable that the present ANN method is exceedingly simple, 
there is no need to use any experimental or calculated 
parameters. The input descriptors (a, b, c, d, e) can be easily 
obtained once the explosive formula confirmed. 

V. CONCLUSION 

A well-trained ANN model was successfully used to predict 
explosion heat of aluminized explosives. Good agreement 
between the simulated values and the experimental values 
proved the utility of this method in a certain extent. The 
successful application also provided a simple and convenient 
way to predict other performances, such as detonation velocity 
and pressure, of composite explosives. 

TABLE III.  APPENDIX. EXPLOSIVE FORMULA 

No. Formula 
1 HMX/94/NC/3/Binder/3 
2 HMX/95/Binder/5 
3 HMX/80/Binder/20 
4 HMX/95.5/Binder/4.5 
5 TNT/90/Al/10 
6 TNT/70/Al/30 
7 TNT/40/RDX/60 
8 TNT/50/PETN/50 
9 PETN/80/Binder/20 
10 RDX/76/W/4/Al/20 
11 RDX/65/W/1.5/G/1.5/Al/32 
12 HMX/51/Al/40/Binder/9 
13 HMX/81/Al/9.9/Binder/9.1 
14 HMX/81.6/Al/4/Binder/14.4 
15 HMX/79/Al/6.6/Binder/14.4 
16 HMX/74.7/Al/10.6/Binder/14.7 
17 HMX/72.7/Al/13.3/Binder/14 
18 HMX/65.7/Al/18.9/Binder/15.4 
19 HMX/64/Al/30/Binder/6 
20 HMX/84/Al/10/Binder/6 
21 HMX/74/Al/20/Binder/6 
22 HMX/64/Al/30/Binder/6 
23 HMX/54/Al/40/Binder/6 
24 HMX/94/Binder/6 
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