

Exploration and Practice of Teaching Method on

Computer Algorithm

Xiang Wang

School of Information and Electronic Engineering

Tianjin Vocational Institute

Tianjin, China

E-mail: wangxiang7504@163.com

Abstract—Algorithm course is a key component in

computer science-related majors of higher schools. Many

college computer science teachers lay emphasis on the
improving the teaching methods of algorithms. Subject

construction is the foundation of collegiate specialty

construction. This paper talks about the reformation and

innovation of the teaching methods of computer algorithm to

improve the teaching efficiency of algorithms course through

teaching the process of greedy algorithms.

Keywords—algorithms course; greedy algorithm; teaching

method

I. INTRODUCTION

An algorithm is a cornerstone of computer science. In
fact, computer algorithm occupies a crucial position within
the development of the information technology, especially in
the mobile Internet era of regulated cloud technology and
big data. However, in recent years, computer science and
relevance special field students pay less attention to
algorithm courses. They think that, for students majoring in
computer science, there is no need to learn the principles of
algorithm design as long as they do well in the area of
programming. The reason leading to such a situation lies in
many different aspects, among which is the problems in
teaching methods of algorithm courses. Greedy algorithm is
the important content of computer algorithm system. I would
like to discuss with you issues concerning the reformation
and innovation of teaching methods of computer algorithm.

II. THE INTRODUCTION OF GREEDY ALGORITHM

Straightforward concept introduction makes students lack
perceptual knowledge due to how abstract greedy algorithms
can be. Therefore, the students can't understand the
connotations and method of thinking of greedy algorithms.
Teachers of algorithms may start their teaching activities
with simple cases to make the students understand the
connotation of algorithm. For example, the problem of
"Making Change" is a good example of a greedy algorithm.

Let's suppose the currency denominations include 50, 20,
10, 5 and 1 Yuan, which devises a method to pay amount R
to customer using fewest number of coins. The problem is to
make change of a given amount using the smallest possible

number of coins. That is, we need to make change for n units
using the least possible number of coins. Greedy algorithms
work by making the decision that seems most promising at
any moment; it never reconsiders this decision no matter
what situation may arise later. For example, if we want make
change for 98 RMB, here R =98 and the solution contains
one 50-yuan bill, two 20-yuan bills, one 5-yuan bill and 3 1-
yuan bills . The reason such an algorithm is called greedy is
because, at every stage, it chooses the largest coin without
worrying about the consequences. Moreover, it never
changes strategy, and once a coin has been included in the
solution set, it remains there. To solve the problem of
"Making Change" in an optimal way, the algorithm needs to
maintain two sets. The first set contains chosen items and the
second set contains rejected items. Let's look at the function
that is used to solve the problem of "Making Change". The
function of "Making Change" is as follows:

We can also set the amount of various denominations of
the money in algorithmic routine to accord with practical
applications. It can be expressed as k[1…n]. The improved
program is as follows:

int Greedy1(int R)

{

 int i, j=0, n[7], m[7]={100,50,20,10,5,2,1};

 for(i=0;i<7;i++)

 n[i]=0;

 i=0;

 while(R>0){

 if(m[i]<=R){

 R-=m[i];

 n[i]++;

 }

 else i++;

 }

 return *n;

}

International Conference on Economics, Management, Law and Education (EMLE 2015)

© 2015. The authors - Published by Atlantis Press 377

In the teaching process, we should let students
understand the different execution steps by analyzing the
algorithmic routines before we introduce the concrete notion
of greedy algorithm. In fact, greedy algorithm consists of
four key points:

 The first key point is to check whether the chosen
set of items provides a solution.

 The second key point is to check the feasibility of a
set.

 The third key point is to find which of the
candidates is the most promising.

 The fourth key point is to give the value of a
solution.

Then, we may let students learn the strict definition of a
greedy algorithm on the basis of a large number of
perceptual knowledge. This cultivates their rational thinking
and helps develop their abilities to solve problems by using
algorithmic routine (i.e. a greedy algorithm is a mathematical
process to make the locally optimal choice at each stage with
the hope of finding a global optimum).

III. THE MUTUAL INTEGRATION OF ALGORITHMS

COURSE AND THE OTHER RRELATED COURSES IN COMPUTER

SCIENCE

If we do not pay attention to the mutual integration of
algorithms course and the other related courses, we neglect
the basic and instrumental role of algorithms course.
Algorithm teaching is merely a castle in the air without the
deep integration of algorithms course and computer specialty
course system. If our students do not feel strongly that
algorithm courses are important to the success of their
specialized study, they may lose that "spark", their
inspiration, and their passion. In fact, we shall focus on
guiding students to apply the basic idea and principle of
computer algorithms to the software engineering practice.
For example, greedy algorithm play an important role in the
problem of scheduling on multi-machines. Let T (n) be time
complexity of matrix multiplication, we can explain the T(n)
through the following recursive expression i.e.,

Of course, we can also think about the more general case
of the problem of scheduling on multi-machines. To make it
easier for us to carry out teaching activities, we can spell out
to the students how to solve the problem of scheduling on
multi-machines by greedy algorithms through the following
example. Let m be the number of the machines, let n be the
number of the jobs, let sort2015 be the name of the sorting
function.

IV. TEACHING DIRECTION OF THE THEORETICAL

ANALYSIS OF GREEDY ALGORITHM

The study of computer algorithm theory is very important
to improve students' professional quality on computer
science, and is an important guarantee of the sustainable

int Greedy2(int R)
{

 int i, j=0,n[7], m[7]={100,50,20,10,5,2,1};

 int k[7]={500,400,300,200,100,50,40};

 for(i=0;i<7;i++)

 n[i]=0;

 i=0;

 while(R>0){

 if((m[i]<=R)&&(k[i]>=1)){

 R-=m[i];

 n[i]++;

 k[i]--;

 }

 else i++;

 }

 return *n;

}

int Dri2015()
{ int n=7,m=3,t[]={6,17,5,19,8,5,4};

 //jobs to be allocated

 Greedy3(t,n,m);

 return 0; }

void Greedy3(int t[],int n,int m) {

 int fn,fm, M[]={0,0,0,0,0,0,0,0};

 for(int i=0;i<n;i++) {

 int max=0,min=10000;

 fn=0; fm=0;

 for(int j=0;j<n;j++) {

 if(max<t[j]){

 max=t[j]; fn=j; } }

 for(j=0;j<m;j++) {

 if(M[fm]>M[j]) fm=j; }

 M[fm]=M[fm]+t[fn]; t[fn]=0;

 cout<<fn<<"work "<<fm<<"machine"<<endl; } }

#define N 10

typedef struct node{

 int ID,time;

}proc2015;

typedef struct Node{

 int ID,a2015;

}m2015;

m2015 con2015[N];proc2015 job[N];

m2015* Find_min(m2015 a[],int m){

m2015* tp2015=&a[0];

for(int i=1;i<m;i++){

 if(a[i].a2015<tp2015->a2015)

 tp2015=&a[i];

 }

 return tp2015;

}

void scheduler2015(int n, int m, int tp2015){

m2015* num2015;

 sort2015(job,n);

 for(i=0;i<n;i++){

 num2015=Find_min(con2015,m);

 printf("...%d...%d...%d...: %d\n",num2015->ID,num2015-

>a2015,num2015->a2015+job[i].time,job[i].ID);

 num2015->a2015+=job[i].time;

 }

 tp2015=con2015[0].a2015;

 for(i=1;i<m;i++){

 if(con2015[i].a2015>tp2015)

 tp2015=con2015[i].a2015;

 }

 printf("...: %d\n",tp2015);

}

378

development of the students. In the teaching process, we
cannot solely focus on the algorithm technique. Algorithm
teaching should focus not only on the algorithm technique
but also on developing students' comprehensive analysis
capability. However, it’s worth noting that we should choose
moderately difficult material concerning algorithms
applications in teaching English. In order to find out the way
to utilize the teaching materials for the algorithm theory
effectively, teachers should operate the guidelines step-by-
step to make the students' tasks easier. For example, analysis
of the algorithm function of the knapsack problem is the
proper teaching material to analyze the features and
advantages of the algorithm theory.

Let set M be the total weight, let n be the number of the

articles, let W[i] be the weight of the (i)th article, set P[i] to

the value of the (i)th article, set X[i] to the (i)th component
of the vector of n elements, and let sort2015 be the name of

the sorting function. Therefore, the following program can

be taken as an example.

As we all know, it is very difficult to make students

understand the correctness of the function above. We ‘d
better adopt apagoge to solve the problem. Let solution of

the knapsack problem be (X1,X2,…,Xn), and





n

i

ii MXW
1

, where 0≤Xi≤1. If W1≤M, then X1=1,

otherwise X1=M/ W1.

 First of all, If n=1, proposition clearly establish.
Secondly, If n<m, proposition clearly establish. When n=m,

if the proposition is not established, there certainly exists

another optimal solution (Y1,Y2,…,Yn), and Yi<Xi,





n

i

ii MYW
1

,  
 


n

i

n

i

iiii PXPY
1 1

. Y1,Y2,…,Yn should

not be all zeros, and 



n

i

iiii WYXWY
2

1)(. We can

guide the students to build another solution (Z1,Z2,…,Zn), it
follows that

Z1=X1, 1

2

1)()()(WYXWYZWZY ii

n

i

iiiii 


.

Because (P1/W1, P2/W2, … , Pn/Wn) is in descending order,

thus  
 


n

i

n

i

iiii PYPZ
1 1

, i.e., (Z1,Z2,…,Zn) is also the

optimal solution. Because Z1=X1, the problem may boil

down to: (W2,…,Wn), (P2,…,Pn). According to the induction
hypothesis, Z2=X2, then we have Z3=X3,, …, Zn=Xn, for the

same reason, i.e.,

 
 


n

i

n

i

iiii PYPZ
1 1

 is contradictory to

 
 


n

i

n

i

iiii

n

i

ii PXPYPZ
1 11

.

REFERENCES

[1] Liu Jing. An Introduction to Computer Algorithm—Techniques of

Design and Analysis[M]. Beijing: Science Press, 2003.

[2] Deng Xiangyang, WanTingting. Design and Analysis of
Algorithms[M]. Beijing: Metallurgical Industry Press, 2006.

[3] Xiang, Wang. " Improvement of Teaching Method of Greedy
Algorithm for Knapsack Problem ". In Proceedings of the 2nd

International Conference on Computer Science and Service
System(CSSS 2012). ISBN：978-1-4673-0719-2. 2012 ,8.

[4] Aho, A.V., Hopcroft, J.E.,and Ullman, J.D.(2007). The Design and

Analysis of Computer Algorithms(Huang, L.P., Wang, D.J., and
Zhang, S., Trans.). Beijing, China: China Machine Press.(1974).

[5] Wang, X.D.(2001). The Design and Analysis of Computer
Algorithms. Beijing, China: Publishing House of Electronics Industry.

[6] Liu, J.(2003). An Introduction to Computer Algorithm—Techniques

of Design and Analysis. Beijing, China:Science Press.

[7] Su, D.F.,and Zhong, C.(2001).The Design and Analysis of Computer

Algorithms. Beijing, China: Publishing House of Electronics Industry.

[8] E.Horowitz.,and S.Sahni.(1978). Fundamentals of Computer
Algorithms. U.S.A.: Compter Science Press.

[9] E.Horowitz., S.Sahni.,and S.Rajasekaran.(1996). Computer
Algorithms/C++. U.S.A.: Compter Science Press.

[10] T.H.Cormen., C.Leiserson.,and C.Stein.(2001). Introduction to

Algorithms. U.S.A:The MIT Press.

[11] Alfred V.Aho.,John E. Hopcroft., and Jeffrey D.Ullman.(1983). Data

Structures and and Algorithms. U.S.A: Addison-Wesley.

[12] Sara Baase., and A.Gelder.(2000). Computer Algorithms:Introduction
to Design and Analysis. U.S.A: Addison-Wesley.

void knapsack(int N2015, float M2015, float W[], float P[], float

X[]){

 sort2015(n,W,P);

 int i;

 float m=M2015;

for(i=0;i<=n-1;i++)

 X[i]=0;

 i=1;

 while(W[i]<=m){

 X[i]=1;

 m-=W[i];

 i++;

 }

 if(i<=n-1) X[i]=m/W[i];

 }

379

