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Abstract. The extensive application of tree model has made tree mining become a hot field in data 
mining research. As an important branch of tree mining, tree cluster and tree classification plays a 
fundamental analysis role in many areas. In this paper, a tree cluster and classification algorithm 
was proposed based on least closed tree, which effectively solved problems in large amount of data 
in practical application. The basic method is bringing forward least closed tree as the candidate 
cluster and classification feature, using dynamic threshold by similarity cluster to make tree cluster 
operation be more quick and accurate, meanwhile the concept of tree classification rule grade 
proposed is used in tree classification algorithm, so that the unknown tree structure could be 
predicted promptly. Experimental results show that the method has higher speed and efficiency than 
that of other similar ones especially when large number of tree nodes. 

Introduction 

As the tree model can accurately denote the key feature of science and engineer data, therefore 
the research of tree mining has attracted more and more people’s attention. Data in many fields 
could be abstracted as trees, such as the XML structure can be described as labeled ordered tree [1, 
2], biology, computer networks, WWW data could also be abstracted as trees, which is used for 
further analysis. 

In recent years, researchers has made plenty of results on tree mining [3, 4, 5], as an important 
branch, tree cluster and tree classification has extensive application in areas like biology and 
internet analysis etc. Many algorithms based on tree cluster and classification has been brought 
forward. Papers [6, 7, 8] respectively put forward tree cluster algorithms on XML document tree. In 
these algorithms, XML documents are abstracted as labeled ordered trees and tree mining method is 
adopted. The problem of these algorithms is that when dealing with small amount of data (few tree 
nodes), they could run smoothly, however, a relatively large database with numbers of tree nodes 
could significantly decrease the efficiency, and even can not run, paper[8] proposed XML tree 
similarity measure algorithm, the number of nodes has become a bottleneck for the algorithm. 
Regards to tree classification, paper [9] proposed a classification method based on frequent pattern, 
the main problem of this method is how to set an minimum support during frequent pattern mining, 
a high support will lead a small amount of result and affect the performance of classifier, yet a low 
support will make the algorithm become low efficiency so that the mining task could not be 
completed. Paper [10] put out a method based on the graph kernel function classification and by 
using support vector machine to carry out classification, whereas this method is of high 
classification performance only for compound structures, and it is not feasible in other applications. 

In this paper, a common cluster and classification method based on least closed tree for large 
scale database was proposed. Algorithm generates feature set by using least closed tree at first, and 
then process tree cluster in accordance with the proposed method of similarity measure, which 
could get all class set and corresponding category, the last step is to predict tree category of the new 
tree structure by taking use of tree classification method. The main contribution of this paper is as 
follows: 

1) Proposed the least closed tree as the candidate feature of tree clustering and classification, 
makes tree mining algorithm could use a low support and consequently generates more candidate 
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feature set which will take an important role during tree cluster and classification, furthermore, a 
candidate feature set composed by least closed tree could not only reserve the useful information 
for tree cluster and classification, but also its quantity is less than the candidate feature composed 
by frequent subtree. 

2) Brought forward the least closed tree mining algorithm, and effectively solved the problem of 
couldn’t take cluster and classification operation when large data amount in practical application. 

3)  Put forward tree similarity measure algorithm so that the bottleneck problem in paper [10] 
could be solved, meanwhile a tree cluster method based on dynamic threshold was proposed. 

4) Put out tree classification rule grade and tree classification method, which could accurately 
predict the category of a new tree. 

5) Experimental results show that the method provided in this paper is better than that of similar 
ones in cluster and classification operation on biological database like Ribonuclease P [12] etc. 

Backgrounds 

Definition 1. Labeled Ordered Tree[1]. A rooted labeled ordered tree ( , )T V E=  is a directed, 
acyclic, connected graph with V  as the set of vertices and }{( , ) | ,E x y x y V= ∈  as the set of edges. l  : 
V L→ is a labeling function mapping vertices to a set of labels }{ 0 1, , , nL l l l=  . il  is the label of node. 
Order means all sub nodes of each node in the tree form a fraternal relationship from left to right. 

Like pre-visiting binary tree, pre-visiting a tree means visiting root first and then each subtree 
from left to right. During this process, the order of each node receiving its visit forms pre-node 
number, short named as node number. During pre-visiting, the order of each node receiving its visit 
forms a string of node number that is called the string show of the tree. 

Definition 2. Tree Database. Let TDB  denote a database of ordered tree, the single tree of TDB  is 
represented as ( , )TID String , the TID is the tree ID in the database, and the String is string of tree. 

Definition 3. Matching and Appearance [11, 15]. If a tree T and a data tree D exist a 
mapping : T DV Vφ → , and the mapping satisfies the following propositions: 

1) ．The mapping φ  between tree T and data tree D is a one-to-one correspondence. 

2) ． ( ) ( )( )T DL v L vφ= . 

3) ． ( ) ( ) ( )( )1 2 1 2, ,T Dv v E iff v v Pff ∈ ∈ . 
4) ． ( ) ( )1 2preorder v preorder v< , denotes the ordered number of node v after the preorder traversal 

of all tree nodes. 
Then calling the φ  is a matching function from tree T to data tree D, i.e., tree T appears in data 

tree D, the T is a subtree of data tree D. If a tree has k nodes, then calling it is a k-subtree, and the 
empty tree matches with any tree. 

Definition 4. Support. Let an ordered tree database TDB be { }1,2, ,iTDB T i n= =  , the absolute 
support of tree T in TDB is defined the number of trees containing tree T in TDB, denoted as 

( ) { }_ sup , ,i i iabs T TDB T T TDB T T= ∈ ⊆ . The relative support of tree T in TDB is defined the percent of 
trees including tree T in TDB, denoted as ( ) ( )_ sup , _ sup , /rel T TDB abs T TDB TDB= . 

Definition 5. Frequent Subtree. Given an ordered tree database { }1,2, ,iTDB T i n= =   and 
minimum relative support min_ sup , if a subtree T satisfies ( )_ sup , min_ suprel T TDB ≥ , then calling the 
subtree T is a frequent subtree in TDB, the set of all frequent subtrees in TDB is denoted 
as ( ) ( ){ }_ sup , min_ supF TDB T rel T TDB= ≥ . 

Definition 6. Closed Tree. Let an ordered tree database TDB be { }1,2, ,iTDB T i n= =  , and let the 
T be a frequent subtree, if there doesn’t exist proper super-trees in the ordered tree database TDB, 
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then calling tree T is a closed tree in TDB, the set of all frequent closed subtrees in the tree database 
TDB is denoted as ( )CF TDB . 

The problem of tree cluster may be described in detail as follows: given an ordered tree 
database { }1, 2, ,iTDB T i n= =  , researching some methods to gain r  non-intersecting 
clusters{ }1 2, , , rβ β β . In this paper, we may choose some representative trees in each cluster, calling 

these trees is a tree class, thus we are able to acquire a set of tree class, denoted as{ }1 2, , , rt t t∗ ∗ ∗
 . 

Definition 7. Least Closed Tree. Let the { }1 2, , , vT t t t=   be a closed tree set, t T∈ , for t T′∀ ∈ , if 

the t′  is not a subtree of tree t , then calling tree t  is a least closed tree. The least closed tree t∗  of 
which the number of nodes is smallest in all least closed trees is regarded as the tree class. 

The problem of tree classification may be described in detail as follows: inputting r  clusters 

( ){ }, 1, 2, ,i it i rβ ∗ =   and a tree T with unknown classification, where the iβ  is a tree set, the it
∗

 is a 
tree class, outputting some cluster that the tree T belongs to. 

Algorithm 

Least Closed Tree Algorithm. In this paper, we concern the mining of the least closed tree. 
Mining the least closed tree has the following several advantages compared with mining the entire 
frequent subtree: firstly, though the amount of the frequent closed trees is less than frequent 
subtrees. In the practical application, we can not only get all frequent subtrees but only can not get 
the frequent closed trees, so we only get the least closed tree in this paper. For example, in the 
Ribonuclease database application, the total files of the database are nearly 2MB. When the 
minimum support is 1%, it will have at least 8GB frequent subtrees files, and will have nearly 
200MB frequent closed trees files, but a large numbers of the data have high similarities in there 
data. For example, some subtrees only have different edges, or only have different nodes. We only 
need mine a feature set, and it can speed up the mining process, and speed up the (classification) 
and the clustering process at the same time. Secondly, the smaller the minimum support is ,the more 
accurate the clustering and classification information will be .If we use the smaller minimum 
support to mine all the frequent subtrees and all the closed tree, for instance ,we set the minimum 
support as 1%, and we can get a lot of subtrees, and sometimes we can not complete the task . So if 
we only mine the least closed trees, we can use the smaller minimum support to get a lot of 
information of the subtrees which are useful for classification and clustering. The most important is 
that mining closed trees can not lose any useful information of the classification and clustering, 
because we can revive all the frequent trees from the closed trees. In the practical application, we 
only need a feature set or a sample set instead of a complete subtrees set, and the experts are only 
interested in the feature set or the sample set. 

ITMSV [17] is an ordered tree mining algorithm. The algorithm uses the right extended method 
to generate the candidate subtrees, and generate the subtree based on the connection strategy. It can 
generate all the candidate subtrees to utilize the first connection strategy, and generate the 
corresponding vector of the subtrees based on the second connection. When we get the candidate 
subtrees , We can get the information of the support at the same time because the subtree vectors 
include all the information of the subtrees in the database, for example, the number of the subtrees, 
and we need not scan the database as well as can speed up the Operating efficiency . 

In this paper, we propose a least closed tree mining algorithm based on the  
ITMSV algorithm defines a pruning process, and deletes all non-closed tree structures based on 

the nature of the closed tree. The process checks all the subtrees if there exist a same support with 
the subtree, and we only need find the hash key based on the node information because all the 
frequent subtrees information have been saved in the hash tables. This algorithm also defines a 
random selector to choose the frequent closed trees randomly, and defines two precision [ ],m nβ =  
(m, n are the non-negative decimal) and 1λ >  to Control the number of the generated frequent trees. 
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For example, when we set β  as [ ]0.1,0.2 and set λ  as10000 , we retain this subtree if the data which is 

generated by the random selector is in the rage of β  , otherwise we delete it, and we judge if the 
total number of the subtree surpasses λ . If there are 10000 feature trees, the algorithm is stopped. 
Finally, this algorithm extracts the entire least closed tree according to the closed trees set. 

Firstly, the algorithm scans the database to get the frequent 1-subtree, and then it uses all the 
frequent 1-subtrees to Completed a hash table, and puts the hash table into a linear table structure. 
We can get the frequent 2-subtrees according to mongering the two keys in the hash table based on 
the Candidate generation strategy. 

The algorithm checks all the frequent 2-subtrees if there exits a same support with the subtree 
calling pruning procedures, if there exists, we delete the 2-subtrees, and otherwise we can choose a 
non-negative decimal according to the system time calling the random selector. If the non-negative 
decimal is in the range of β ,we should reserve the subtree, otherwise we should delete the subtree. 
We must judge the total number of the generated tree if it is in the scope of λ , and if it surpasses, 
the algorithm is stopped. Finally, we build a new hash table which contains all the remaining 
frequent 2-subtrees, and put it into a table structure at the same time. The keys of the hash table are 
the keys of the tree, and the keys of the hash table contain the information of the subtree vector, 
then we can get the frequent 3-subtrees. We can call the pruning procedures and the random 
selection procedures in the same way, and put the hash table which includes the remaining frequent 
3-subtrees into the table structure. We can get all the frequent closed tree structures, and in the end, 
the algorithm can generate all the least closed trees sets. 

The algorithm of the LeastClosedTreeMine is the following: 
Algorithm 1 Procedure LeastClosedTreeMine 
Input: the database of tree: D , support , α, β, γ. 
Output: all least closed trees. 
1: LeastClosedTreeMine (TDB,minusp) : 
2: F1={frequent 1-subtrees}; Hash ←F1; 
3: Line[1] ←Hash and Node=1 and TotalNum=0; 
4: While(Line[Node]!=null) do 
5:     Node=Node+1; new_hash=null; 
6:     For all [T] in Hash do 
7:         For each element (x,i) ∈[T] do 
8:             For each element (y,j) ∈[T] do 
9:             R={(x,i) ⊕(y,j)}; 
10:             If Node<α then 
11:                 If  all subtrees of R if frequent then 
12:                 Delete R;continue; 
13:             L(R)={ L(X,i) ⊕L(Y,j)}; 

14:             If support(R)>minusp AND Check(R) 
AND Rand()∈β then 

15:                 TotalNum++;New_hash←R; 
16:                 If TotalNum>γ then return; 
17:             End IF 
18:     End for all; 
19:     If  new_hash!=null then 
20:         Line[Node] ←new_hash; 
21: End while 
22: End LeastClosedTreeMine 

Tree Similarity. Similarity measurement methods include the comparison of the characteristics 
and the calculation of the conversion costs and so on. We can also combine the several methods. To 
measure the similarity. The similarity of the two trees structure can be measured by the ratio which 
the same information that both include has in the total information. Given the two tree structures, 
the formula for calculating the similarity can be defined as: 

( ) ( )
( , )

( ) ( )
a b

a b
a b

t T t T
sim T T

t T t T
∩

=
∪

                                                                                          (1) 
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In this paper, we proposed the characteristics comparison method to measure the similarity based 

on the calculation of the XML document similarity[16]. We should not only calculate the semantic 
similarity, but we also calculate the structural similarity considering the structural characteristics of 
the tree. When we get the semantic similarity and the structural similarity, we can add the weights 
to the two aspects respectively to get the total similarity ,and in the practical application, we can 
find that structural characteristics of trees are often more important than semantic characteristics. 
For example, Biologists tend to give more focus on the structure of a particular molecular structure, 
and excellent structural site allows users to browse the Web quickly and easily, so we set the two 
weights which have a larger margin in the similarity comparison. 

Definition 8. Expansion Vector [8]. We set na  as the tree nodes. ( ) ( )1 2, , , , mEx na na na na na=  is 
the expansion vector of na , and ( )1,2, ,ina m=   are the synonyms, compound words or the acronym 
forms of na . 

Definition 9. We set 1t ， 2t  as the tree nodes logo, and we define the scores of similarity 
between 1t ， 2t  as the following [8]: 

6) If 1t  matches 2t  completely 
5) If 1t  matches certain elements besides 2t  in the ( )2Ex t  completely or 2t  matches certain 

elements besides 1t  in the ( )1Ex t  completely. 

4) If certain elements besides 1t  in the ( )1Ex t  matches certain elements besides 2t  in the ( )2Ex t  
completely. 

3) If   1t  matches 2t  partly. 
2) If 1t  matches certain elements besides 2t  in the ( )2Ex t  partly or 2t  matches certain elements 

besides 1t  in the ( )1Ex t  partly. 
1) If certain elements besides 1t  in the ( )1Ex t  matches certain elements besides 2t  in the ( )2Ex t  

partly. 
0) there exits no matching 
The formula which is used as the similarity measurement between 1t and 2t   for any two tree 

structure 1t ， 2t  is as the following: 
( ) ( ) ( )1 2 1 1 2 2 1 2, , ,Sim t t SemSim t t StruSim t tλ λ= +  

In the formula, ( )1 2,SemSim t t is the semantic similarity, and ( )1 2,SemSim t t  is the structural 

similarity. 1 2,λ λ  are the weights of the semantic similarity and the structural similarity respectively. 
In the actual calculation, we set 1λ as 0.2, and set 2λ  as 0.8. 

When we calculate the semantic similarity, we firstly calculate one vector value of the following 
two according to the number of the tree nodes: 

( ) ( )( )1 1 1 1
1 1 1, , , ,m mt Ex l score Ex l score=   

( ) ( )( )2 2 2 2
2 1 1, , , ,n nt Ex l score Ex l score=   

We only need calculate one vector value of the two as the value of the semantic similarity, 
because that structural characteristics of trees are often more important than semantic 
characteristics. If the number of nodes of 1t  is smaller than 2t  , we compute the vector of 1t  , and 

otherwise, we compute the vector of 2t .The ( )j
iEx l  is the expansion vector of the node logo of the 

tree, and 
j

iscore  is the score value of the similarity of the node 
j

il . We compare 
j

iscore  and the node 
which is the most similar to it in the other tree, and give the score of the similarity for all the nodes 
computed once, and compute it as the following: 

( )1 2
1

, 6
m

j
i

i
SemSim t t score k

=

= ∑                                                                                             (2) 
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In the formula (2), k is the number of the nodes of the trees which have the smaller nodes, and 
the sum of the 

j
iscore   is the score value of the similarity of the corresponding tree .This algorithm 

can save the time and speed up the efficiency when there are a lot of nodes. 
We firstly mark the nodes of the tree based on the depth-first method, and give the similar nodes 

the same number. When we do this, each path of the node trees can be expressed by a digital 
sequence. We can find the similar path of the frequent sequence of the two subtrees, and then we 
can compute it as the following: 

( ) ( ) ( )1 2
1

1 1,
1

N

t
t t

StruSim t t V R MR
N L R=

  
= × +   +    

∑  

( )

( )

( )
( ) ( ) ( )

                                    
1     

1

t

t t

t
e C

F R

V R F R
N C V e

L e∈



= +



∑
 

( )
1  
0tF R 

= 


 

Tree Cluster Algorithm. The algorithm in this paper firstly calls the least closed tree mining 
algorithm to gain a least closed tree set, then achieves cluster analysis by calculating the similarity 
between trees. At last, all trees are classified according to the similarity. In order to cluster exactly, 
we will choose threshold ε  dynamically. We randomly select a subtree t  from the least closed tree 
set, and calculate the similarity between tree t  and others in the least closed tree set. Then we rank 
all similar values by descending to form a non-increasing curve, after that, we find the inflexion of 
the non-increasing curve by computing the second derivative. At last, the inflexion closest to the 
coordinates’ origin is regarded as the threshold ε  of similarities, all subtrees whose similar 
thresholds exceed the ε  form a candidate set, if the number of elements of the candidate set exceeds 
the specified-user density threshold 1d > , then these subtrees come into being a classification. 
Afterwards, we delete these subtrees from the least closed tree set, and adopt similar method to get 
other classifications for the rest of the least closed tree set. If the number of elements of the 
candidate set is less than the specified-user density, we will renewably choose a subtree, and then 
newly calculate according to the above-mentioned method. 

For all acquired classifications, we compute their tree labels. All tree labels constitute a set, 

denoted as { }1 2, , , rt t t∗ ∗ ∗
 , where the it

∗

 denotes the tree label of classification i . The computing 
method of the it

∗

 is the following: the tree label of a classification is a least closed tree t∗  of which 
the number of nodes is least. 

The algorithm of the TreeCluster  is the following: 
Algorithm 2 Procedure TreeCluster 
Input: least closed trees: T , density: D. 
Output: all class C and Tc. 
1: TreeCluster (T,d) : 
2: While(T!=null) do 
3:     t=rand(); 
4:     For all temp in T do 
5:         Sim(t,temp); 
6:     End for all; 
7:     threshold=Sort(); 
8:     S={all|Sim(all,t)> threshold}; 
9:     If |S|>=threshold then 
10:         C←S; T=T- S; 
11:     End IF 
12: End while 
13: For all c in C do 
14:     Tc←gen(c); 
15: End TreeCluster 

Rt is leaf 

Rt is not leaf 

Rt is similarity 
Rt is not similarity 
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Tree Classification Algorithm. After the algorithm in this paper finishes running and gains r  
classifications { }1 2, , , rβ β β , the algorithm in this article classifies a new tree t  further. By all 

appearances, each closed tree p is corresponding to a class rule ip t∗→  in a certain classification iβ , 
where the it

∗

 represents a classification, and the iβ  is corresponding with the tree label. We may 
directly make use of these classification rules to classify a new instance; however, there exist a 
problem in this way. In order to reserve these closed trees which are important for classifying 
prediction, the support usually is specified a small value, the algorithm can only gain the least 
closed tree set, but the number of least closed trees is still large. If all closed trees are executed 
operations of tree matching, then it is referred too many computations. In practice, the number of 
tree nodes often is so large that it restricts practical application for classification methods. 
Consequently, we must choose some decisive classification rules for classifying in all classification 
rules. Before introducing class methods, we first define a rank of trees’ classification rules.  

Definition 10. Classification rules’ rank of trees. For any two rules 1t  and 2t , if one of the 
following conditions is established, then the rank of rule 1t  is higher than that of rule 2t , denoted 
as 1 2t t . 

1) The support of rule 1t  is larger than that of rule 2t . 
2) The support of rule 1t  is the same as rule 2t , but the number of its nodes is larger than rule 2t  
3) The support of rule 1t  is the same as rule 2t , and their nodes are also same, however, rule 1t  is 

outputted earlier than rule 2t . 
According to the classification rules’ rank of trees, all classification rules may be arrayed 

linearity order from large to small; we choose n  rules from large to small. For the sake of 
classifying exactly, we respectively calculate the average of similar grades between the t  and each 
classification in r  classifications. The function is the following: 

( ) ( )
1

, ,
n

i k
k

Equal t Sim t t nβ
=

= ∑
 

Where the iβ  represents the classification i , k it β∈ , the parameter n  denotes the number of rules 
whose ranks are higher in classification iβ . If the n  is larger than the number of all rules, then the 
n  is namely the number of all rules. According to all averages of similar grades, it is feasible to 
predict the classification of the t , i.e., the classification which the maximum average of similar 
grade corresponds to is as a new tree’s category. 

The algorithm of the TreeClassification is the following: 
Algorithm 3 Procedure TreeClassification 
Input: class: C, trees: t , number: n. 
Output: category. 
1: TreeClassification (C,t,n)  : 
2: Score[]; 
3: Sort(C); 
4: For all c in C do 
5:     Score←Equal(t,c); 
6: End for all; 
7: max=Max(Score); 
8: End TreeClassification 

Experimental 

We implement all the algorithms of this paper using C++, and for these algorithms, we have 
carried out a large number of experiments with different parameters running on experimental 
environments (Pentium(R) 4 CPU 2.80GHz, Memory 1GB, Hardware 120G, OS Red Hat Linux6.0). 
We adopt thread to calculate the time of the algorithms. 
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We test the algorithms with artificial database, and to truly prove the effectiveness of them, we 
use a common artificial database generator, which is from document [10], using 8 parameters to 
adjust the distribution of result data. The 8 parameters are S  (the size of the label set), p (the 
probability of one node can generate child node), L (the number of the base tree), I (base tree 
height), C (the fan-out of each node of base tree), N (the size of TDB ), H (the max height of each 
tree in TDB ), F ( the fan-out of each node of TDB ). The base tree and the tree height in TDB are both 
follow the Gaussian distribution with expectation to be ( )I H  and standard deviation to be 1. The 
default parameter of result data is S100 P0.5 L10 I4 C3 N100000 H8 F6 and the default support is 
1%. 

We compare the ATFC algorithm in document [7] and the Xproj algorithm in document [8] with 
the Tree Cluster algorithm in this paper with different parameters, and the experimental results has 
been shown in Figure 1. And then we compared the Tree Classification algorithm with the XRules 
algorithm in document [10] to all of the result class sets. We conduct experiments in accordance 
with the increment of complexity (fan-out, height) of tree for the class set which contains 10 
unclassified trees, and the experimental results has been shown in Figure 2. 
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Figure 1. run time vs threshold of support 
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Figure 2. runtime vs complexity of tree 

We cluster and classify the Ribonuclease P data in biology. Due to too large for the amount of 
data, we use a higher support here than in artificial database, and so, using clustering algorithm with 
different parameters, we have the experimental results shown in Figure 3 and using classification 
algorithm with the increment of complexity (fan-out, height) of tree, we have the experimental 
results shown in Figure 4. 
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Figure 3. run time vs threshold of support 
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Figure 4. runtime vs complexity of tree 
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We analyses web log using classification algorithm and clustering algorithm of this paper. We 
download the web log from Adaptive Web Sites (https://www.cs.washington.edu/research/adaptive/) 
from which we select a portion from Sept.20, 1999 to Oct.4, 1999. Then from the huge amount of 
data, we get that about 500,000 logs to visit cs.washington.edu, and convert it to a tree. From it we 
get the set of class relationship shown in Table 1. 

Table 1. the set of class relationship 

 

Conclusions 
A cluster and classification method aimed at large scale database was introduced in this paper, 

which provided a common solution to many practical applications. Proposed a cluster and 
classification method based on least closed tree, so that a low support could be retained and more 
candidate feature set that of important role in cluster and classification will be generated. Least 
closed tree mining algorithm referred in this paper effectively solved the problem of couldn’t 
undergo the operation of cluster and classification on large data amount in practical applications. 
Adopted dynamic threshold degree selection as well as similarity cluster method, so that could 
separate the tree structures with different similarity, thus it can carry out tree cluster operation 
quickly and accurately. Introduced the conception of tree classification rule grade, and put this 
conception into tree classification operation, accordingly it could predict unknown tree structure 
accurately. Numbers of experimental results show that the method in this paper is effective and 
feasible under the condition of many tree nodes and large amount of data and it is obviously better 
than other methods in the application of Ribonuclease P. The tree cluster and classification method 
in this paper is base on labeled ordered tree, for future work, we will consider taking more features 
like labeled unordered tree or unlabeled tree into the analysis of cluster and classification, 
meanwhile expansion tree mining including graph mining [13, 14], graph cluster and classification 
could also employ this method, all of which are arranged in the next research plan. 
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