

A Novel Tree Cluster and Classification Approach Based on Least
Closed Tree

Xin Guo
School of Software and Service Outsourcing, Jishou University, Zhangjiajie, Hunan 427000, China

jianghai079@126.com

Keywords: Data mining; Tree mining; Closed tree pattern; Tree cluster; Tree classification

Abstract. The extensive application of tree model has made tree mining become a hot field in data
mining research. As an important branch of tree mining, tree cluster and tree classification plays a
fundamental analysis role in many areas. In this paper, a tree cluster and classification algorithm
was proposed based on least closed tree, which effectively solved problems in large amount of data
in practical application. The basic method is bringing forward least closed tree as the candidate
cluster and classification feature, using dynamic threshold by similarity cluster to make tree cluster
operation be more quick and accurate, meanwhile the concept of tree classification rule grade
proposed is used in tree classification algorithm, so that the unknown tree structure could be
predicted promptly. Experimental results show that the method has higher speed and efficiency than
that of other similar ones especially when large number of tree nodes.

Introduction

As the tree model can accurately denote the key feature of science and engineer data, therefore
the research of tree mining has attracted more and more people’s attention. Data in many fields
could be abstracted as trees, such as the XML structure can be described as labeled ordered tree [1,
2], biology, computer networks, WWW data could also be abstracted as trees, which is used for
further analysis.

In recent years, researchers has made plenty of results on tree mining [3, 4, 5], as an important
branch, tree cluster and tree classification has extensive application in areas like biology and
internet analysis etc. Many algorithms based on tree cluster and classification has been brought
forward. Papers [6, 7, 8] respectively put forward tree cluster algorithms on XML document tree. In
these algorithms, XML documents are abstracted as labeled ordered trees and tree mining method is
adopted. The problem of these algorithms is that when dealing with small amount of data (few tree
nodes), they could run smoothly, however, a relatively large database with numbers of tree nodes
could significantly decrease the efficiency, and even can not run, paper[8] proposed XML tree
similarity measure algorithm, the number of nodes has become a bottleneck for the algorithm.
Regards to tree classification, paper [9] proposed a classification method based on frequent pattern,
the main problem of this method is how to set an minimum support during frequent pattern mining,
a high support will lead a small amount of result and affect the performance of classifier, yet a low
support will make the algorithm become low efficiency so that the mining task could not be
completed. Paper [10] put out a method based on the graph kernel function classification and by
using support vector machine to carry out classification, whereas this method is of high
classification performance only for compound structures, and it is not feasible in other applications.

In this paper, a common cluster and classification method based on least closed tree for large
scale database was proposed. Algorithm generates feature set by using least closed tree at first, and
then process tree cluster in accordance with the proposed method of similarity measure, which
could get all class set and corresponding category, the last step is to predict tree category of the new
tree structure by taking use of tree classification method. The main contribution of this paper is as
follows:

1) Proposed the least closed tree as the candidate feature of tree clustering and classification,
makes tree mining algorithm could use a low support and consequently generates more candidate

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015)

© 2016. The authors - Published by Atlantis Press 202

feature set which will take an important role during tree cluster and classification, furthermore, a
candidate feature set composed by least closed tree could not only reserve the useful information
for tree cluster and classification, but also its quantity is less than the candidate feature composed
by frequent subtree.

2) Brought forward the least closed tree mining algorithm, and effectively solved the problem of
couldn’t take cluster and classification operation when large data amount in practical application.

3) Put forward tree similarity measure algorithm so that the bottleneck problem in paper [10]
could be solved, meanwhile a tree cluster method based on dynamic threshold was proposed.

4) Put out tree classification rule grade and tree classification method, which could accurately
predict the category of a new tree.

5) Experimental results show that the method provided in this paper is better than that of similar
ones in cluster and classification operation on biological database like Ribonuclease P [12] etc.

Backgrounds

Definition 1. Labeled Ordered Tree[1]. A rooted labeled ordered tree (,)T V E= is a directed,
acyclic, connected graph with V as the set of vertices and }{(,) | ,E x y x y V= ∈ as the set of edges. l :
V L→ is a labeling function mapping vertices to a set of labels }{ 0 1, , , nL l l l=  . il is the label of node.
Order means all sub nodes of each node in the tree form a fraternal relationship from left to right.

Like pre-visiting binary tree, pre-visiting a tree means visiting root first and then each subtree
from left to right. During this process, the order of each node receiving its visit forms pre-node
number, short named as node number. During pre-visiting, the order of each node receiving its visit
forms a string of node number that is called the string show of the tree.

Definition 2. Tree Database. Let TDB denote a database of ordered tree, the single tree of TDB is
represented as (,)TID String , the TID is the tree ID in the database, and the String is string of tree.

Definition 3. Matching and Appearance [11, 15]. If a tree T and a data tree D exist a
mapping : T DV Vφ → , and the mapping satisfies the following propositions:

1) ．The mapping φ between tree T and data tree D is a one-to-one correspondence.

2) ． () ()()T DL v L vφ= .

3) ． () () ()()1 2 1 2, ,T Dv v E iff v v Pff ∈ ∈ .
4) ． () ()1 2preorder v preorder v< , denotes the ordered number of node v after the preorder traversal

of all tree nodes.
Then calling the φ is a matching function from tree T to data tree D, i.e., tree T appears in data

tree D, the T is a subtree of data tree D. If a tree has k nodes, then calling it is a k-subtree, and the
empty tree matches with any tree.

Definition 4. Support. Let an ordered tree database TDB be { }1,2, ,iTDB T i n= =  , the absolute
support of tree T in TDB is defined the number of trees containing tree T in TDB, denoted as

() { }_ sup , ,i i iabs T TDB T T TDB T T= ∈ ⊆ . The relative support of tree T in TDB is defined the percent of
trees including tree T in TDB, denoted as () ()_ sup , _ sup , /rel T TDB abs T TDB TDB= .

Definition 5. Frequent Subtree. Given an ordered tree database { }1,2, ,iTDB T i n= =  and
minimum relative support min_ sup , if a subtree T satisfies ()_ sup , min_ suprel T TDB ≥ , then calling the
subtree T is a frequent subtree in TDB, the set of all frequent subtrees in TDB is denoted
as () (){ }_ sup , min_ supF TDB T rel T TDB= ≥ .

Definition 6. Closed Tree. Let an ordered tree database TDB be { }1,2, ,iTDB T i n= =  , and let the
T be a frequent subtree, if there doesn’t exist proper super-trees in the ordered tree database TDB,

203

then calling tree T is a closed tree in TDB, the set of all frequent closed subtrees in the tree database
TDB is denoted as ()CF TDB .

The problem of tree cluster may be described in detail as follows: given an ordered tree
database { }1, 2, ,iTDB T i n= =  , researching some methods to gain r non-intersecting
clusters{ }1 2, , , rβ β β . In this paper, we may choose some representative trees in each cluster, calling

these trees is a tree class, thus we are able to acquire a set of tree class, denoted as{ }1 2, , , rt t t∗ ∗ ∗
 .

Definition 7. Least Closed Tree. Let the { }1 2, , , vT t t t=  be a closed tree set, t T∈ , for t T′∀ ∈ , if

the t′ is not a subtree of tree t , then calling tree t is a least closed tree. The least closed tree t∗ of
which the number of nodes is smallest in all least closed trees is regarded as the tree class.

The problem of tree classification may be described in detail as follows: inputting r clusters

(){ }, 1, 2, ,i it i rβ ∗ =  and a tree T with unknown classification, where the iβ is a tree set, the it
∗

 is a
tree class, outputting some cluster that the tree T belongs to.

Algorithm

Least Closed Tree Algorithm. In this paper, we concern the mining of the least closed tree.
Mining the least closed tree has the following several advantages compared with mining the entire
frequent subtree: firstly, though the amount of the frequent closed trees is less than frequent
subtrees. In the practical application, we can not only get all frequent subtrees but only can not get
the frequent closed trees, so we only get the least closed tree in this paper. For example, in the
Ribonuclease database application, the total files of the database are nearly 2MB. When the
minimum support is 1%, it will have at least 8GB frequent subtrees files, and will have nearly
200MB frequent closed trees files, but a large numbers of the data have high similarities in there
data. For example, some subtrees only have different edges, or only have different nodes. We only
need mine a feature set, and it can speed up the mining process, and speed up the (classification)
and the clustering process at the same time. Secondly, the smaller the minimum support is ,the more
accurate the clustering and classification information will be .If we use the smaller minimum
support to mine all the frequent subtrees and all the closed tree, for instance ,we set the minimum
support as 1%, and we can get a lot of subtrees, and sometimes we can not complete the task . So if
we only mine the least closed trees, we can use the smaller minimum support to get a lot of
information of the subtrees which are useful for classification and clustering. The most important is
that mining closed trees can not lose any useful information of the classification and clustering,
because we can revive all the frequent trees from the closed trees. In the practical application, we
only need a feature set or a sample set instead of a complete subtrees set, and the experts are only
interested in the feature set or the sample set.

ITMSV [17] is an ordered tree mining algorithm. The algorithm uses the right extended method
to generate the candidate subtrees, and generate the subtree based on the connection strategy. It can
generate all the candidate subtrees to utilize the first connection strategy, and generate the
corresponding vector of the subtrees based on the second connection. When we get the candidate
subtrees , We can get the information of the support at the same time because the subtree vectors
include all the information of the subtrees in the database, for example, the number of the subtrees,
and we need not scan the database as well as can speed up the Operating efficiency .

In this paper, we propose a least closed tree mining algorithm based on the
ITMSV algorithm defines a pruning process, and deletes all non-closed tree structures based on

the nature of the closed tree. The process checks all the subtrees if there exist a same support with
the subtree, and we only need find the hash key based on the node information because all the
frequent subtrees information have been saved in the hash tables. This algorithm also defines a
random selector to choose the frequent closed trees randomly, and defines two precision [],m nβ =
(m, n are the non-negative decimal) and 1λ > to Control the number of the generated frequent trees.

204

For example, when we set β as []0.1,0.2 and set λ as10000 , we retain this subtree if the data which is

generated by the random selector is in the rage of β , otherwise we delete it, and we judge if the
total number of the subtree surpasses λ . If there are 10000 feature trees, the algorithm is stopped.
Finally, this algorithm extracts the entire least closed tree according to the closed trees set.

Firstly, the algorithm scans the database to get the frequent 1-subtree, and then it uses all the
frequent 1-subtrees to Completed a hash table, and puts the hash table into a linear table structure.
We can get the frequent 2-subtrees according to mongering the two keys in the hash table based on
the Candidate generation strategy.

The algorithm checks all the frequent 2-subtrees if there exits a same support with the subtree
calling pruning procedures, if there exists, we delete the 2-subtrees, and otherwise we can choose a
non-negative decimal according to the system time calling the random selector. If the non-negative
decimal is in the range of β ,we should reserve the subtree, otherwise we should delete the subtree.
We must judge the total number of the generated tree if it is in the scope of λ , and if it surpasses,
the algorithm is stopped. Finally, we build a new hash table which contains all the remaining
frequent 2-subtrees, and put it into a table structure at the same time. The keys of the hash table are
the keys of the tree, and the keys of the hash table contain the information of the subtree vector,
then we can get the frequent 3-subtrees. We can call the pruning procedures and the random
selection procedures in the same way, and put the hash table which includes the remaining frequent
3-subtrees into the table structure. We can get all the frequent closed tree structures, and in the end,
the algorithm can generate all the least closed trees sets.

The algorithm of the LeastClosedTreeMine is the following:
Algorithm 1 Procedure LeastClosedTreeMine
Input: the database of tree: D , support , α, β, γ.
Output: all least closed trees.
1: LeastClosedTreeMine (TDB,minusp) :
2: F1={frequent 1-subtrees}; Hash ←F1;
3: Line[1] ←Hash and Node=1 and TotalNum=0;
4: While(Line[Node]!=null) do
5: Node=Node+1; new_hash=null;
6: For all [T] in Hash do
7: For each element (x,i) ∈[T] do
8: For each element (y,j) ∈[T] do
9: R={(x,i) ⊕(y,j)};
10: If Node<α then
11: If all subtrees of R if frequent then
12: Delete R;continue;
13: L(R)={ L(X,i) ⊕L(Y,j)};

14: If support(R)>minusp AND Check(R)
AND Rand()∈β then

15: TotalNum++;New_hash←R;
16: If TotalNum>γ then return;
17: End IF
18: End for all;
19: If new_hash!=null then
20: Line[Node] ←new_hash;
21: End while
22: End LeastClosedTreeMine

Tree Similarity. Similarity measurement methods include the comparison of the characteristics
and the calculation of the conversion costs and so on. We can also combine the several methods. To
measure the similarity. The similarity of the two trees structure can be measured by the ratio which
the same information that both include has in the total information. Given the two tree structures,
the formula for calculating the similarity can be defined as:

() ()
(,)

() ()
a b

a b
a b

t T t T
sim T T

t T t T
∩

=
∪

 (1)

205

In this paper, we proposed the characteristics comparison method to measure the similarity based

on the calculation of the XML document similarity[16]. We should not only calculate the semantic
similarity, but we also calculate the structural similarity considering the structural characteristics of
the tree. When we get the semantic similarity and the structural similarity, we can add the weights
to the two aspects respectively to get the total similarity ,and in the practical application, we can
find that structural characteristics of trees are often more important than semantic characteristics.
For example, Biologists tend to give more focus on the structure of a particular molecular structure,
and excellent structural site allows users to browse the Web quickly and easily, so we set the two
weights which have a larger margin in the similarity comparison.

Definition 8. Expansion Vector [8]. We set na as the tree nodes. () ()1 2, , , , mEx na na na na na=  is
the expansion vector of na , and ()1,2, ,ina m=  are the synonyms, compound words or the acronym
forms of na .

Definition 9. We set 1t ， 2t as the tree nodes logo, and we define the scores of similarity
between 1t ， 2t as the following [8]:

6) If 1t matches 2t completely
5) If 1t matches certain elements besides 2t in the ()2Ex t completely or 2t matches certain

elements besides 1t in the ()1Ex t completely.

4) If certain elements besides 1t in the ()1Ex t matches certain elements besides 2t in the ()2Ex t
completely.

3) If 1t matches 2t partly.
2) If 1t matches certain elements besides 2t in the ()2Ex t partly or 2t matches certain elements

besides 1t in the ()1Ex t partly.
1) If certain elements besides 1t in the ()1Ex t matches certain elements besides 2t in the ()2Ex t

partly.
0) there exits no matching
The formula which is used as the similarity measurement between 1t and 2t for any two tree

structure 1t ， 2t is as the following:
() () ()1 2 1 1 2 2 1 2, , ,Sim t t SemSim t t StruSim t tλ λ= +

In the formula, ()1 2,SemSim t t is the semantic similarity, and ()1 2,SemSim t t is the structural

similarity. 1 2,λ λ are the weights of the semantic similarity and the structural similarity respectively.
In the actual calculation, we set 1λ as 0.2, and set 2λ as 0.8.

When we calculate the semantic similarity, we firstly calculate one vector value of the following
two according to the number of the tree nodes:

() ()()1 1 1 1
1 1 1, , , ,m mt Ex l score Ex l score= 

() ()()2 2 2 2
2 1 1, , , ,n nt Ex l score Ex l score= 

We only need calculate one vector value of the two as the value of the semantic similarity,
because that structural characteristics of trees are often more important than semantic
characteristics. If the number of nodes of 1t is smaller than 2t , we compute the vector of 1t , and

otherwise, we compute the vector of 2t .The ()j
iEx l is the expansion vector of the node logo of the

tree, and
j

iscore is the score value of the similarity of the node
j

il . We compare
j

iscore and the node
which is the most similar to it in the other tree, and give the score of the similarity for all the nodes
computed once, and compute it as the following:

()1 2
1

, 6
m

j
i

i
SemSim t t score k

=

= ∑ (2)

206

In the formula (2), k is the number of the nodes of the trees which have the smaller nodes, and
the sum of the

j
iscore is the score value of the similarity of the corresponding tree .This algorithm

can save the time and speed up the efficiency when there are a lot of nodes.
We firstly mark the nodes of the tree based on the depth-first method, and give the similar nodes

the same number. When we do this, each path of the node trees can be expressed by a digital
sequence. We can find the similar path of the frequent sequence of the two subtrees, and then we
can compute it as the following:

() () ()1 2
1

1 1,
1

N

t
t t

StruSim t t V R MR
N L R=

  
= × +   +    

∑

()

()

()
() () ()

1

1

t

t t

t
e C

F R

V R F R
N C V e

L e∈



= +



∑

()
1
0tF R 

= 


Tree Cluster Algorithm. The algorithm in this paper firstly calls the least closed tree mining
algorithm to gain a least closed tree set, then achieves cluster analysis by calculating the similarity
between trees. At last, all trees are classified according to the similarity. In order to cluster exactly,
we will choose threshold ε dynamically. We randomly select a subtree t from the least closed tree
set, and calculate the similarity between tree t and others in the least closed tree set. Then we rank
all similar values by descending to form a non-increasing curve, after that, we find the inflexion of
the non-increasing curve by computing the second derivative. At last, the inflexion closest to the
coordinates’ origin is regarded as the threshold ε of similarities, all subtrees whose similar
thresholds exceed the ε form a candidate set, if the number of elements of the candidate set exceeds
the specified-user density threshold 1d > , then these subtrees come into being a classification.
Afterwards, we delete these subtrees from the least closed tree set, and adopt similar method to get
other classifications for the rest of the least closed tree set. If the number of elements of the
candidate set is less than the specified-user density, we will renewably choose a subtree, and then
newly calculate according to the above-mentioned method.

For all acquired classifications, we compute their tree labels. All tree labels constitute a set,

denoted as { }1 2, , , rt t t∗ ∗ ∗
 , where the it

∗

 denotes the tree label of classification i . The computing
method of the it

∗

 is the following: the tree label of a classification is a least closed tree t∗ of which
the number of nodes is least.

The algorithm of the TreeCluster is the following:
Algorithm 2 Procedure TreeCluster
Input: least closed trees: T , density: D.
Output: all class C and Tc.
1: TreeCluster (T,d) :
2: While(T!=null) do
3: t=rand();
4: For all temp in T do
5: Sim(t,temp);
6: End for all;
7: threshold=Sort();
8: S={all|Sim(all,t)> threshold};
9: If |S|>=threshold then
10: C←S; T=T- S;
11: End IF
12: End while
13: For all c in C do
14: Tc←gen(c);
15: End TreeCluster

Rt is leaf

Rt is not leaf

Rt is similarity
Rt is not similarity

207

Tree Classification Algorithm. After the algorithm in this paper finishes running and gains r
classifications { }1 2, , , rβ β β , the algorithm in this article classifies a new tree t further. By all

appearances, each closed tree p is corresponding to a class rule ip t∗→ in a certain classification iβ ,
where the it

∗

 represents a classification, and the iβ is corresponding with the tree label. We may
directly make use of these classification rules to classify a new instance; however, there exist a
problem in this way. In order to reserve these closed trees which are important for classifying
prediction, the support usually is specified a small value, the algorithm can only gain the least
closed tree set, but the number of least closed trees is still large. If all closed trees are executed
operations of tree matching, then it is referred too many computations. In practice, the number of
tree nodes often is so large that it restricts practical application for classification methods.
Consequently, we must choose some decisive classification rules for classifying in all classification
rules. Before introducing class methods, we first define a rank of trees’ classification rules.

Definition 10. Classification rules’ rank of trees. For any two rules 1t and 2t , if one of the
following conditions is established, then the rank of rule 1t is higher than that of rule 2t , denoted
as 1 2t t .

1) The support of rule 1t is larger than that of rule 2t .
2) The support of rule 1t is the same as rule 2t , but the number of its nodes is larger than rule 2t
3) The support of rule 1t is the same as rule 2t , and their nodes are also same, however, rule 1t is

outputted earlier than rule 2t .
According to the classification rules’ rank of trees, all classification rules may be arrayed

linearity order from large to small; we choose n rules from large to small. For the sake of
classifying exactly, we respectively calculate the average of similar grades between the t and each
classification in r classifications. The function is the following:

() ()
1

, ,
n

i k
k

Equal t Sim t t nβ
=

= ∑

Where the iβ represents the classification i , k it β∈ , the parameter n denotes the number of rules
whose ranks are higher in classification iβ . If the n is larger than the number of all rules, then the
n is namely the number of all rules. According to all averages of similar grades, it is feasible to
predict the classification of the t , i.e., the classification which the maximum average of similar
grade corresponds to is as a new tree’s category.

The algorithm of the TreeClassification is the following:
Algorithm 3 Procedure TreeClassification
Input: class: C, trees: t , number: n.
Output: category.
1: TreeClassification (C,t,n) :
2: Score[];
3: Sort(C);
4: For all c in C do
5: Score←Equal(t,c);
6: End for all;
7: max=Max(Score);
8: End TreeClassification

Experimental

We implement all the algorithms of this paper using C++, and for these algorithms, we have
carried out a large number of experiments with different parameters running on experimental
environments (Pentium(R) 4 CPU 2.80GHz, Memory 1GB, Hardware 120G, OS Red Hat Linux6.0).
We adopt thread to calculate the time of the algorithms.

208

We test the algorithms with artificial database, and to truly prove the effectiveness of them, we
use a common artificial database generator, which is from document [10], using 8 parameters to
adjust the distribution of result data. The 8 parameters are S (the size of the label set), p (the
probability of one node can generate child node), L (the number of the base tree), I (base tree
height), C (the fan-out of each node of base tree), N (the size of TDB), H (the max height of each
tree in TDB), F (the fan-out of each node of TDB). The base tree and the tree height in TDB are both
follow the Gaussian distribution with expectation to be ()I H and standard deviation to be 1. The
default parameter of result data is S100 P0.5 L10 I4 C3 N100000 H8 F6 and the default support is
1%.

We compare the ATFC algorithm in document [7] and the Xproj algorithm in document [8] with
the Tree Cluster algorithm in this paper with different parameters, and the experimental results has
been shown in Figure 1. And then we compared the Tree Classification algorithm with the XRules
algorithm in document [10] to all of the result class sets. We conduct experiments in accordance
with the increment of complexity (fan-out, height) of tree for the class set which contains 10
unclassified trees, and the experimental results has been shown in Figure 2.

0

2000

4000

6000

8000

10000

8 5 3 1 0.8

Support(%)

Ti
me

(s
)

ATFC

XProj

TreeCluster

Figure 1. run time vs threshold of support

0
500

1000
1500
2000
2500
3000
3500
4000

(3,4) (4,5) (5,6) (6,7) (7,8) (8,9) (9,10)

(Fan-out,Height) of tree

Ti
me

(s
)

XRules

TreeClassification

Figure 2. runtime vs complexity of tree

We cluster and classify the Ribonuclease P data in biology. Due to too large for the amount of
data, we use a higher support here than in artificial database, and so, using clustering algorithm with
different parameters, we have the experimental results shown in Figure 3 and using classification
algorithm with the increment of complexity (fan-out, height) of tree, we have the experimental
results shown in Figure 4.

0

5000

10000

15000

20000

10 8 6 4 2

Support(%)

T
i
m
e
(
s
)

ATFC

XProj

TreeCluster

Figure 3. run time vs threshold of support

0

1000

2000

3000

4000

5000

6000

7000

(3,4) (4,4) (4,5) (5,6) (5,7) (6,5) (6,8)

(Fan-out,Height) of tree

Ti
me

(s
)

XRules

TreeClassification

Figure 4. runtime vs complexity of tree

209

We analyses web log using classification algorithm and clustering algorithm of this paper. We
download the web log from Adaptive Web Sites (https://www.cs.washington.edu/research/adaptive/)
from which we select a portion from Sept.20, 1999 to Oct.4, 1999. Then from the huge amount of
data, we get that about 500,000 logs to visit cs.washington.edu, and convert it to a tree. From it we
get the set of class relationship shown in Table 1.

Table 1. the set of class relationship

Conclusions
A cluster and classification method aimed at large scale database was introduced in this paper,

which provided a common solution to many practical applications. Proposed a cluster and
classification method based on least closed tree, so that a low support could be retained and more
candidate feature set that of important role in cluster and classification will be generated. Least
closed tree mining algorithm referred in this paper effectively solved the problem of couldn’t
undergo the operation of cluster and classification on large data amount in practical applications.
Adopted dynamic threshold degree selection as well as similarity cluster method, so that could
separate the tree structures with different similarity, thus it can carry out tree cluster operation
quickly and accurately. Introduced the conception of tree classification rule grade, and put this
conception into tree classification operation, accordingly it could predict unknown tree structure
accurately. Numbers of experimental results show that the method in this paper is effective and
feasible under the condition of many tree nodes and large amount of data and it is obviously better
than other methods in the application of Ribonuclease P. The tree cluster and classification method
in this paper is base on labeled ordered tree, for future work, we will consider taking more features
like labeled unordered tree or unlabeled tree into the analysis of cluster and classification,
meanwhile expansion tree mining including graph mining [13, 14], graph cluster and classification
could also employ this method, all of which are arranged in the next research plan.

References
[1] M.J.Zaki, “Efficiently mining frequent trees in a forest: Algorithms and Applications”, In IEEE
Transaction on Knowledge and Data Engineering, special issue on Mining Biological Data.Vol.17,
No.8, pp 1021~1035, 2005.

[2] Y.Chi, Y.Yang, and R.R. Muntz, “Indexing and Mining Free Trees”, Proc. Thind IEEE Int’1
Conf. Data Mining, 2003.

[3] Y.Chi, Y.Yang, and R.R. Muntz, “HybridTreeMiner:An Efficient Algorihtm for Mining
Frequent Rooted Trees and Free Trees Using Canonical Forms”, Proc.16th Int’1 Conf. Scientific
and Statistical Database Management,2004.

[4] Y.Chi, Y.Yang,Y.Xia,and R.R.Muntz, “CMTreeMiner: Mining both closed and maximal
frequent subtrees”, In The Eighth Pacific Asia Conference on Knowledge Discovery and Data
Mining (PAKDD’04), May 2004.

[5] M.Hasan, V.Chaoji, S.Salem, j.Besson, and M.J.Zaki, “ORIGAMI: Mining Representative
Orthogonal Graph Patterns”, 7th IEEE International Conference on Data Mining, Omaha, NE,
October 2007.

[6] T. Dalamagas, T. Cheng, K. Winkel, T. Sellis, “Clustering XML Documents Using Structural
Summaries”, Information Systems, Elsevier, January2005.

210

[7] C.C. Aggarwal, N. Ta, J. Wang, J. Feng, M.J.Zaki, “XProj: A Framework for Projected
Structural Clustering of XML Documents”, SIGKDD’07.

[8] Wu Yangyang, Lei Qing, “A Method of Discovering Relation Information from XML DAata”,
Journal of Software, 2008(6)：1422~1427.

[9] M Deshpande, M Duramochi, G Darypis, “Frequent substructure-based approaches for
classifying chemical compounds”, IEEE Trans on Knowledge and Data Engineering, 2005,
17(8):1036~1050.

[10] T Horvath, T Gartner, S Wrobel, “Cyclic pattern kernels for predictive graph mining [C]”,
KDD-2004, Seattle, USA, 2004.

[11] Zhao Chuanshen,etc. “Frequent Subtree Mining Based on Projected Branch.”, Journal of
Computer Reseach and Development,2006 :456~462(in Chinese).

[12] J.W. Brown, “The Ribonuclease P Database”, Nucleic Acids Research, vol.27, no.1, pp.314-
315,1999.

[13] V.Chaoji, M.A.Hasan, S.Salem, J.Besson, M.J.Zaki., “ORIGAMI: A Novel and Effective
Approach for Mining Representative Orthogonal Graph Patterns”, Statistical Analysis and Data
Mining, Vol. 1, Issue 2, pp. 67-84, (DOI: 10.1002/sam.10004) June 2008.

[14] Vineet Chaoji, Mohammad Al Hasan, Saeed Salem, Mohammed J. Zaki, “An integrated,
generic approach to pattern mining: data mining template library”, Data Mining and Knowledge
Discovery , Published Online: DOI:10.1007/s10618-008-0098-x, June 2008.

[15] Zhu Yongtai,etc, “ESPM—An algorithm to mine frequent subtrees”, Journal of Computer
Reseach and Development, 2004(10): 1720~1726(in Chinese).

[16] Lee JW, Lee KH, Kim W, “Preparations for semantics-based XML mining”, In: Cercone N,
Lin TY, Wu XD, eds. Proc. Of the 2001 IEEE Int’1 Conf. on Data Mining. Washington: IEEE
Computer Society, 2001. 345~352.

[17] Yun Li, Xin Guo, Yun-Hao Yuan, “A Fast Algorithm of Mining Induced Subtrees”, Proc. of
international conference on Information and Automation (ICIA 2008), 195~199.

211

