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Abstract. Efficient liver segmentation from volume data provides important assistance for minimal 
invasive surgery and treatment. However, this task suffers from the special anatomy and topological 
changes. This paper presents a robust interactive method, which treats it as a semi-supervised 
learning task. An initial classification is performed to partition the volume data into homogeneous 
blocks to guide the segmentation. It is easy to implement and a more general linear or nonlinear 
model can be formed by virtue of semi-supervised learning. Experimental results demonstrate the 
performance of the proposed scheme in liver contours extracting. 

Introduction 
Traditional surgical planning of liver uses volumetric information stored in a stack of 

intensity-based images usually from computerized tomography (CT) and MRI scanners [1]. Based on 
a number of image slices, surgeons build 3D model of liver, tumor, and vasculature. Quickly and 
accurately digitized contour model is the basic premise of the surgical simulation and biomechanical 
evaluation in liver minimal invasive surgery. To move, arrange and remove individual part in a 3D 
model, each object contour need to be accurately extracted [2]. This task is difficult, even for 
experienced surgeons. Moreover, tumors can create anatomical variability, which further complicates 
the situation in volumetric data sets. As a consequence, surgeons can miss important information or 
draw incorrect conclusions, which can lead to suboptimal treatment strategy decisions. Because 
complete liver 3D structure is crucial in computer-aided diagnostic [3–4], volume segmentation has 
been intensively applied with guaranteed results [5].  

To deal with the liver segmentation problem, numerous algorithms have been investigated [6]. 
Commonly, a proper shape or intensity prior is beneficial to separate individual object and create 
virtual boundaries from surrounding tissues. Level set method maybe a nice solution for this complex 
problem in theory. However, the scheme is very sensitive to the initialization and suffers from the 
convergence to the local minima. Gao and Chae [7] proposed an active contour tracking algorithm to 
separate the touching tissues and adaptively deal with the topological changes, which can obtain 
individual model with higher accuracy but needed more manual interventions. Gang Chen and Li xu 
Gu [8] proposed a novel multiple-initialization LSM approach to overcome the leakage and 
over-segmentation problems in segmenting the liver region from MRIs. Xing Zhang and Jie Tian [9] 
present an approach for automatic liver segmentation from computed tomography (CT) scans that is 
based on a statistical shape model (SSM) integrated with an optimal-surface-detection strategy, but 
requires a multi-dimension parameter space and high computational cost. Because contour extracting 
in liver image suffers from topological changes, this fact makes liver segmentation is a challenging 
issue [10].  

A novel semi-automatic algorithm is proposed to efficiently achieve the desired contours through 
a simple strategy. Firstly, the volume data is partitioned into homogeneous blocks by 3D mean shift 
classification [11]. Then, user interaction is performed in the selected MPR (Multi-Planar 
Reformation) image planes to indicate the desired object and background, i.e. initialize the labeled 
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and unlabeled instances as the inputs of subsequent semi-supervised learning (SSL). The object 
contours can be extracted by labeling all the blocks as either object or background (labeled as 1 and 
0). 

The rest of the paper is organized as follows. Section 2 lists the previous works. Section 3 presents 
the proposed semi-supervised learning based algorithm. Section 4 performs the experiment to verify 
the proposed method. Section 5 concludes the paper. 

Previous Works 
The efficiency of user interaction is important to guarantee the precision. A Cellular Automaton 

(CA) based method [12] has the merits of few interventions, which can balance the contradiction of 
precision and computing time. Another Maximal Similarity based Region Merging (MSRM) 
segmentation [13] presents a more robust interactive method. According to MSRM, the scheme is 
divided into two stages. In the first stage, MSRM only merges the marker background regions. For 
each region BB M∈ and its adjacent region
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and the remained non-marker regions are merged in the second stage. For each non-marker region 
P N∈ and its adjacent region 
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where ρ is the similarity measurement. 
O

M and 
B

M  are the marker regions labeled as object and 

background respectively. N is the non-marker region set. 1,2,...,{ }Q
Q i i qS S

=
= is the formed set of Q 's 

adjacent regions. This two-stage method suffers from the complex implementation. Inspiring by the 
proposed SSL based method for digital matting problem [14], if the initially labeled objects are used as 
the input of SSL, the rest objects will be labeled automatically through solving a quadratic 
optimization problem. 

Semi-Supervised Based Liver Segmentation 
In liver segmentation, a proper initial classification could lead to a good convergence to the true 

object contour [15], 3D mean shift is firstly used to partition the volume data into homogeneous 
blocks for subsequent interaction. We mark the liver regions on 2D MPR image planes to indicate 
desired 3D objects. Blocks merging is performed with a simple CA rule [16] based on maximal 
similarity to produce initial labeled and unlabeled instances. Then, the rest parts will be extracted 
automatically by the proposed semi-supervised learning mechanism.  
Liver Marking and Similarity Based Blocks Merging 

Let M and M  denote the sets of marker and non-marker blocks respectively. To guide the 
merging process, we use Bhattacharyya coefficient [17] as the similarity descriptor. Let iq  be an 
adjacent block of p  and 1,2,...,{ }p i i kN q == denotes the set of p 's adjacent blocks of 26 Moore 
neighborhood. The Bhattacharyya coefficient is defined as:  

( , )
ii p qp q Hist Histq = ⋅∑                                                                                                                 (3)   

where 
p

Hist  and 
i

q
Hist  are the normalized grayscale histograms of p  and iq  respectively, and the 

higher Bhattacharyya coefficient indicates the higher similarity between them.  The proposed 
merging scheme can be described as follows:                                                                                        
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where tM  and 
t

M  are the sets of marker and non-marker blocks at t  time respectively. The merging 
procedure stops when the entire M  shrinks to empty. This strategy merges similar blocks as many as 
possible. After initial merging, there is still numbers of blocks wrongly labeled. The next step is to 
adjust this process by a SSL based mechanism so that the desired objects can be correctly extracted. 
Fig. 1 shows a view of interaction in 2D MPR image. We use green and blue markers to differentiate 
object and background. The red lines indicate edges between the homogeneous blocks pre-classified 
by the 3D mean shift. The proposed merging method can efficiently separate desired object contours.  

     
(a)                                             (b) 

Fig.1. User interaction and merged blocks. (a) Initial classification and user markers in 2D MPR image (Green 
and blue markers indicate the object and background respectively). (b) 2D view of merged blocks by the 

proposed method. 
Semi-Supervised Segmentation  

We treat each block i∈Ω  as a data point denoted by d
ix ∈ . ix can be set as iI or other features 

extracted for block i . In this paper, we set i ix I= which is a scale value ( 1d = ). The learning 
problem can be then formulated as follows. Given a data point set , { }d

i iX X x ∈Ω⊂ = , the label 
values{ }

li i Xl ∈  of the labeled data points { }
ll i iX x ∈Ω= , our goal is to compute the accurate label values 

{ }
ui i Xl ∈ of the unlabeled data points u lX X X= − through learning methods. 

For each block i∈Ω  and its neighboring blocks denoted by 1{ , , }i mN τ τ=  , we assume that its 
label value il can be predicted by a linear combination of the label values { }

ij j Nl ∈  of iN ⊂ Ω .   If use 

1{ , , }m

T
i l lτ τΓ =   where i iNτ ∈  to denote the vector of label values of iN , and 1{ , , }m

T
i iif f fτ τ=   to 

denote the vector of the linear combination coefficients, the combination for i  can be represented by  
T

i i il f= Γ .                                                                                                                                       (5) 

We select the blocks in a 26 Moore neighborhood centered at i as the neighbors ( 26m = ). The 
computation of if is accomplished by the local learning process, which describes the dependencies 
between data points { }

ij j Nx ∈ in d
  and { }

ij j Nl ∈ in . if  can then be used to predict il from ix .  

For a data vector x X∈ , we denote ' 1
TTx x =   . The local learning can be described as a linear 

model: 

314



'
0

0

T Tl x x
β

β β
β
 

= + =  
 

.                                                                                                                    (6) 

where 1[ , , ]T
dβ β β=   and 0β are the model coefficients. We denote the notation: 

1

' '[ , ]
m

T
iX x xτ τ=  which is a matrix of size ( 1)m d× + and is stacked by the data values of the blocks 

in iN . With the ridge regression technique [18], we can estimate β and 0β by solving a quadratic 
optimization problem: 
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The optimal solution of (7) can be easily derived as 
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where ( )I


is the corresponding identity matrix. 

Substituting (8) into (6), we can finally get if of (5) as 
1 '

( )( )T
i i i r m i if X X I X xλ −= + .                                                                                                                        (9) 

which is free from { }
ij j Nl ∈ and only relates to ix and { }

ij j Nx ∈ . rλ is a parameter for which we set 0.1.  

In (5), il  can also be rewritten in the form of the linear combination of label values of all the blocks. 
We denote the label values with the vector 1[ , , ]T

nl lΓ =   where the coefficients with 

1[ , , ]T
i i inf fξ =   . For iξ , the values for the blocks in iN  are equal to the corresponding ones in if , 

and the remaining is zero. We have  
T

i il ξ= Γ .                                                                                                                                         (10) 

By introducing a new matrix F  through stacking 1{ } : [ , , ]i i nFξ ξ ξ∈Ω =  , we can rewrite (10) as 
TFΓ = Γ .                                                                                                                                     (11) 

If we know F , a classical way to estimate Γ  is to minimize the following quadratic cost  
2 *arg min T

l lF c
a

Γ − Γ + Γ −Γ .                                                                                                                          (12) 

where lΓ denotes the vector of the label variables of the labeled blocks in lΩ  and *
lΓ  denotes the 

vectors of the already known label values of the labeled blocks. Here we set c = ∞ , which forces the 
label value to be 1 for the labeled object blocks and 0 for background.  

In order to solve (12), we need to reformulate it. We introduce the diagonal matrix C of size n n× , 
for which the j th diagonal element takes the constant value c if lj∈Ω , and other diagonal elements 
are zero. We also bring in the vector *

lΓ of length n , for which the j th element equals the already 
known label value of block j  if lj∈Ω . Then, (12) is reformulated as 

* *
( ) ( )arg min ( )( ) ( ) ( )

n

T T T
n nR

I F I F C
a∈

Γ − − Γ + Γ −Γ Γ −Γ                                                                    (13)                                                                                                              

where ( )nI is the n n× identity matrix.  

By taking the first derivative of  Γ  in (13) and setting it to zero, we get the solution 
1 *

( ) ( )(( )( ) )T
n nI F I F C C−Γ = − − + + Γ                                                                                          (14) 
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Equation (14) can be computed if the linear combination coefficients in (5) are known. Then we 
can label all blocks by the sign  

( ) 0.5
( )

0,
if i

i
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Γ >

Γ = 


1，
                                                                                                                           (15) 

It is worth noting that the initial homogeneous blocks merging is crucial for subsequent learning 
processing, which can efficiently reduce the dimensions of computing matrix. The proposed 
segmentation method can be described as a general cluster-then-label algorithm of semi-supervised 
classification. 
Algorithm : Cluster-then-Label 

Input: original voxels data iV∈Ω , an unsupervised clustering algorithm A , labeled 
blocks 1 1( , ), , ( , )l lb y b y , unlabeled data 1, ,l l ub b+ + , and a semi-supervised learning algorithm SSL . 

Output: labels on unlabeled blocks 1, ,l l uy y+ + . 
1. Clustered blocks 1, , l ub b + using A . 
2. For each resulting clustered block, let S be the labeled instances. Learn a semi-supervised 

predictor from : ( )sS f SSL S= . Apply sf to all unlabeled instances. 
In step 1, the clustering algorithm A  is unsupervised. In step 2, we learn one predictor using the 

labeled instances to apply for the unlabeled instances. This cluster-then-label algorithm does not 
necessarily involve a probabilistic mixture model. 

Experimental Results 

The proposed method is essentially an adaptive segmentation method. With the simple markers, 
all the blocks can be automatically labeled as object or background. We first evaluate the proposed 
method with a series of CT sequences. Then, we compare it quantitatively with the classical MSRM 
algorithm. The software is designed based on VC++ 9.0 and implemented on an Intel Xeon E5620 2.4 
GHz CPU with 24GB RAM.  
Experimental Analysis of the Proposed Method 

Fig. 2 demonstrates a CT sequence (512 by 512 by 320) with an associate resolution of [0.6, 0.6, 
0.6] mm. Fig. 2 (a)-(c) show the interaction in MPR planes; the rest images show the corresponding 
2D view of segmentation results with SSL. After the initial classification, we input some interactive 
information: the green marker represents the liver artery object while the blue markers represent the 
background in the selected axial, sagittal and coronal image planes. The marker blocks cover only 
part but representative features of desired artery objects. 

   
(a)                                      (b)                                                    (c) 

   
(d)                                         (e)                                                 (f) 

Fig.2. Examples of initial classification and interaction in MPR planes. (a) - (c) Selected axial, sagittal and 
coronal image planes.  (d) - (f) Segmented results in  MPR planes. 
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Fig.3. Liver segmentation results. The object contours are rendered as colored mesh models. 

The total computing time of the proposed SSL method takes about 4.25 seconds on the whole CT 
data. We use multiple label values on the homogeneous blocks to extract multiple liver objects. The 
resulting mesh models are listed in Fig. 3. Another important issue is that the local resulting errors 
can be re-edited by additional interaction. In realistic systems, user can set data boundary or bounding 
box to reduce computing time. 
Comparison with MSRM 

In this section, we compare the SSL algorithm with the MSRM segmentation method [13] using 
the same input markers. For a fair comparison, we extend the original region based MSRM to a block 
based version (denote by BMSRM), i.e. the data points in MSRM are mean shift classified blocks 
instead of the original regions. The total evolution time of BMSRM takes about 27.28 seconds on the 
same data. The extracted models with SSL and BMSRM are listed in Fig. 4.  Fig. 4 (b) demonstrates 
the difference between BMSRM and the proposed SSL algorithm. We can see that BMSRM is easy to 
fail in some important objects and wrongly label some background blocks as object (highlighted by 
green profile). A block is wrongly labeled as liver object, that dues to BMSRM only considers local 
neighborhood similarity while SSL can achieve a global minimal deviation optimization. 

  

 (a)                                      (b)  
Fig.4. Comparisons of SSL and BMSRM. (a) Segmentation result with SSL. (b) Segmentation result with 

BMSRM. Segmentation difference is marked out with green profile.   
To quantitatively compare these two methods, we manually label the desired objects in the CT 

slices and take them as ground truth. Then, we compute the true positive rate (TPR) and false positive 
rate (FPR) for these segmentation results [13]. The TPR is defined as the ratio of the number of 
correctly classified object pixels to the number of total object pixels in the ground truth, and the FPR 
is defined as the ratio of the number of background pixels but classified as object pixels to the number 
of background pixels in the ground truth. Obviously, the higher TPR and lower FPR indicate better 
efficiency. Table I lists comparison of these two methods on CT data in Fig. 4. The numeral results 
imply that SSL achieves better segmentation performance.  

Table 1.  Comparison of SSL and BMSRM  

Method Time(s
) TPR (%) FPR (%) 

SSL 4.25 96.31 2.18 
BMSRM 27.28 91.20 7.64 

 

We also perform the validation in numbers of MRI sequences and get the similar results. This 
validation demonstrates that by grouping the similar pixels into homogenous blocks, mean shift 
initial classification improve the robustness of  SSL to image noises and small pixel variations.  
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Commonly, the proposed SSL method is not sensitive to the initial classification, this fact makes it 
is more robust and efficient in image segmentation tasks. Although the proposed algorithm can 
greatly reduce the requirements of user interaction, but more manually fine markers are still crucial in 
region with complex structures, which dues to this algorithm only considers the intensity property in 
liver characteristics. Subsequent work will combine other machine learning method such as active 
learning to automatically select the confusing instances for manually marking. The liver artery shape 
and arrangement priors should be considered to improve the precision of segmentation further. 

Conclusion 
A novel interactive method based on semi-supervised learning is proposed to resolve liver 

segmentation. Volume data is firstly clustered into homogeneous blocks, and then an iterative 
merging scheme is performed to produce the initial labeled and unlabeled instances for subsequent 
semi-supervised learning. The proposed maximal similarity based merging mechanism can 
efficiently reduce the dimensions of computing matrixes of semi-supervised learning. With simple 
matrix operations, problem-solving is easy to implement. The proposed method provides a general 
framework for interactive segmentation, which does not depend essentially on mean shift, and other 
unsupervised methods can also be used in initial classification. Furthermore, we will explore how to 
improve the efficiency with parallel computing. 
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