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Abstract. When a search engine returns query results to users, it always returns the number of 
relevant documents (i.e., hits). The text line containing the hits number is called as hits line. The 
hits number can be used in several applications such as building meta-search engine, estimating the 
size and the relevance of search engines. Since the hits line is mixed with other text lines in the 
result page, it is difficult to automatically recognize and extract the line from the result page. To this 
end, decision tree techniques are employed together with a heuristic approach to build two filters to 
automatically identify the hits line. First, texts in result pages are automatically extracted in lines. 
Then four key features are identified and used to build a decision tree based on the learning sample 
search engines. Classification rules from the tree are built to serve as the first filter to recognize the 
extracted text lines. To reduce the mis-classification of the first filter, the second filter is 
constructed using a heuristic weighting approach. The experiment based on 100 search engines 
shows that the accuracy of 10-fold cross-validation is up to 95%.  

 Introduction 
With the explosive development of Web, search engines have become the most popular Web tool 

for us in our daily life. We can use search engines to search documents, products, movies, music, 
images, blogs, etc., which are accessible through the internet. When a query is submitted to a search 
engine, it always returns a number that indicates how many results are relevant to the user query. 
We call the number as hits number. This hits number can be used in some applications. For example, 
building a large-scale meta-search engine [1] needs the number of documents to globally rank the 
documents returned by multiple underlying component search engines. The hits number can also be 
used to estimate the size of a search engine (i.e. the number of documents a search engine contains) 
and the relevance of search engine (i.e. how good a search engine is relevant to a given topic or 
category) [2]. The hits number is usually contained in a line visually at a specific place within the 
query result page, which we call as document hits line.  

To able to extract the hits number, we need to first identify the hits line. However, the hits line is 
mixed with other result text lines in the result page, therefore it is difficult to automatically 
recognize and extract the line from the result page. Although a lot of work [7,9,10,11,13] have been 
done for extracting data from Web pages, there is rarely work to address this particular problem. To 
this end, we develop a two-step filtering approach to this problem. First, we identify several features 
from a number of real result pages, and use them to build a decision tree. We then use the tree to 
derive several classification rules as the first filter. To refine the results of the first filter, we design 
a second filter which uses weight-based heuristic approach. Our experiment indicates that this two-
step filtering approach is highly effective in identifying the real hits line.  

This paper has two major contributions. First, we propose a decision tree based learning 
approach to derive classification rules, which can be used to automatically identify the hits line. To 
resolve the failures of the decision three, we propose to use a second step to improve the 
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effectiveness. Second, this approach can be also used to extract other special piece of data on the 
Web pages or even other type of text documents. 

The rest of this paper is organized as follows. Section 2 describes our strategies for extracting 
HTML text lines. Section 3 presents the features used for building decision tree filter. Section 4 
discusses the decision tree induction algorithm based on selected features. Section 5 discusses our 
method of constructing another filter using heuristics. Section 6 presents the experiment and Section 
7 concludes the paper. 

HTML Extraction 
Visually, we can see that a whole HTML result page is displayed line by line through a browser. 

These kinds of lines are actually formatted in a HTML in a very complicated way. For example, a 
visual line in a browser might be composed of several <table> tags in the HTML. It is much harder 
to figure out organization of these <table> tags and extract them as a single line. One of the tasks of 
the HTML extraction is to organize and extract lines as showed visually in a browser. 

The documents hits line usually contains numeric numbers (integer), for example, in figure 1 and 
2. If a line does not contain any numeric numbers, we can assume the line is not the hits line. 
Therefore, in the HTML extraction, we only consider the lines that contain numeric numbers.  

  
Figure 1: the Example of document hits of Google 

 

 
Figure 2: The Example of document hits line 
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However, a result page might contain many lines that have numeric numbers and these lines are 
actually the noisy data for recognizing the hits line. To reduce such noisy data, we should extract as 
fewer numeric numbers as possible from lines. So we use favor-hits-line extraction strategies to 
extract the numeric numbers. The favor-hits-line extraction strategy is to use some delimiters that 
often appear in the hits line to tokenize the lines to get the numeric numbers. Thus, even a line that 
has numeric numbers would not be considered if hits line delimiters are not used. For example, 
some lines that contain numeric numbers in a date format like 12/12/2013 or a time like 12:12:60 
would not be considered as potential hits lines because the “/” and “:” are not the delimiters of hits 
lines. The extraction strategy would reduce the noisy data of hits line to some extent. 

A result page might contain form widgets and scripts. It is not possible for the hits line to appear 
in them and they might become noisy data of hits lines. Therefore, they should not be extracted. 

Feature Selection 
Before learning, we should identify some features that can discriminate hits lines from others 

lines. We investigate the result pages of more than 100 search engines and find that a hits line 
usually might contain some key words(such as found, returned, matching and results ), query term 
and “of” pattern(for example, 1-10 of 100) besides numeric numbers, as showed in figure 1 and 2. 
Based on this investigation, we define the following features for each line: 

• The number of numeric numbers(numOfNums). 
• Contain “of” pattern(containOfPattern)? 
• Contain keywords(containKeyWords)? 
• Contain query term(containQueryTerm)? 

The number of numeric numbers has discrete values (1,2,3,4,6,…15 ). If a line has more than 15 
numeric numbers, 15 is specified. If a line has “of” pattern, then the value of containOfPattern 
feature is 1, otherwise is 0. If a line contain one or more keywords, then the value of 
containKeyWords is 1, otherwise is 0. If a line contains query term, then the value of 
containQueryTerm is 1, otherwise is 0. 

For the class, we just have two categories: one is hits line, the other is non-hits line.  

 Decision Tree Induction 
We collect 100 search engines, respectively submit three queries to each search engines to get 

the result pages, extract all lines that contain numeric numbers, and then analyze the lines to get 
their features. All these lines with features are dumped to training database. So far, each line in the 
training database can be considered as a training example. 

The decision tree induction algorithm is based on the ID3 [3]. In the algorithm, all features are 
categorical, i.e, discrete-valued. We use Gini function to select the best splitting feature. However, 
our decision tree induction algorithm, as showed in table 1, has some special differences from the 
ID3 [3]. It is the special circumstances of the topic that decide the differences. As we can see, in a 
result page, only one or two lines are the hits lines, while others are not, which counts for a huge 
majority. Our goal of the tree induction is to learning as many hits line formats as possible to 
classify new hits lines. We do not want any hits line is missing in the tree induction because of the 
majority voting rule. Therefore, the majority voting rule is not applicable to this circumstance. And 
our experiment proves that if we use the majority rule the prediction accuracy is very low.  Thus, 
we revise the ID3  to adapt it to our decision tree induction. As showed in figure 3, if attribute-list is 
empty, we first check if there exists a hits line class; if it is, then we label the leaf node with the hits 
line class, otherwise, non-hits line is labeled. Another revise to the ID3 is when the samples for a 
given value ai of test-attribute is empty we label the leaf node with the non-hits line class. With 
these two revise, the classification rules are as in table 2.  

However, the first revise leads to more non-hits line examples misclassified as hits line class. 
The result is that we may have a number of hits lines in a result page after applying the 
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classification rules. Actually we just need one or two lines to be hits lines. To solve this side-effect 
of tree induction, we apply some heuristic approach as the last filter to get the real hits line. 

 

 

Heuristic Approach 
The heuristic approach is to filter the misclassified non-hits lines of the classification rules. To 

do this, we do some investigations on the result pages and the results of using classification rules. 
We find that the real hits line usually has more different keywords than non-hits lines and is located 
in first place or top 7 lines.  We also find that some search engines [4,5,6] return the categories hits 
as well as the document hits in a result page, and the categories hits are always displayed before the 
document hits. The categories hits are still kept in the result of classification rules, for example, in 
table 3. In this case, the first heuristics can not apply to them. After the study of such results, we 
find that if we give “of” pattern more weights and choose the biggest number of lines with “of” 
pattern, the real hits line would have more weights than others. With these observations, we develop 
a filter that is based on counting weight of each line. 

Generate_Decision_Tree(samples, attribute_list) 
{   create a node N; 

if samples are all of the same class C, then 
     return N as a leaf node labeled with the class C; 
if attribute_list is empty then 
{     if there exists a hits line in samples, then  
          return N as a leaf node labeled with the hits line class; 
     else 
          return N as a leaf node labeled with no-hits line class; 
} 
select test-attribute, the attribute among attribute_list with the highest impurity; 
label node N with the test-attribute; 
new-attriubte-list = attribute_list – test-attribute;  //remove the test-attribute. 
for each known value ai of test-attribute  
       grow a branch from node N for the condition test-attribute = ai ; 
       let si be the set of samples in samples for which test-attribute = ai ; 
       if si is empty then 
              attach a leaf labeled with the no hits line class; 

else 
              attach the node returned by Generate_Decision_Tree(si, new-attribute-list); 

} 

Table 1: Decision Tree Induction Algorithm 

containKeyWords=0 Λ containOfPattern=1Λ numOfNums=4->true 
containKeyWords=1 Λ containOfPattern=1 Λ numOfNums=2->true 
containKeyWords=1 Λ containOfPattern=1 Λ numOfNums=12->true 
containKeyWords=0 Λ containOfPattern=0 Λ numOfNums=1 Λ containQueryTerms=1->true 
containKeyWords=0 Λ containOfPattern=1 Λ numOfNums=3 Λ containQueryTerms=0->true 
containKeyWords=1 Λ containOfPattern=0 Λ numOfNums=1->true 
containKeyWords=1 Λ containOfPattern=0 Λ numOfNums=2->true 
containKeyWords=1 Λ containOfPattern=0 Λ numOfNums=3->true 
containKeyWords=1 Λ containOfPattern=0 Λ numOfNums=4 Λ containQueryTerms=0->true 
containKeyWords=1 Λ containOfPattern=0 Λ numOfNums=9 Λ containQueryTerms=1->true 
containKeyWords=1 Λ containOfPattern=1 Λ numOfNums=3->true 
containKeyWords=1 Λ containOfPattern=1 Λ numOfNums=4->true 
 

Table 2: Classification Rules 
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The numOfDifferentKeyWords denotes how many different key words the line has; If the line 

contain “of” pattern, then containOfPattern is 1, otherwise 0. If the line contains the biggest number 
among the lines with “of” pattern, then isMaxNumber is 1, otherwise 0. If the line is the first line in 
the result of classification rules, isFirstLine is 1, otherwise 0. The n and m in our experiment is 4 
and 3 respectively. 

 

Experiment 
As we mentioned in Section 4, we collect 100 search engines that covers different fields, such as 

government, art, agriculture, entertainment, university and general search engine. We manually 
submit three different queries to each search engine to get the first result page of each query. We 
use hothouseobjects library together with our algorithms to extract lines that contain numeric 
numbers from the result pages. And then we dump all the lines with the features needed in tree 
induction and heuristic approach into training examples database. 

To do 10-fold cross validation [8], we divide the 100 search engines into 10 groups, and each 
group has 10 search engines. Then every time we use 9 groups for learning and 1 group for testing. 

At first, we use the standard decision tree induction program C5.0 [12] to do 10-fold cross 
validation. The average accuracy is about 50% because of the majority rule in the tree induction. It 
causes that some real hits lines are misclassified as non-hits lines. This is totally avoided in our tree 
induction algorithm. 

Then, we use our two filters to recognize the hits lines of the same data. First, we use 9 groups 
for learning to build the decision tree, and then use the classification rules of the tree to filter the 
lines of 1 group. After the classification rules filter is finished, we use heuristic filter to the 
intermediate result. The final results would be the predicted hits lines of the group. The 
experimental result is showed in table 4. 

Experiment Accuracy Reasons 
1 100%  
2 100%  
3 90% no rules for the new site hits line 
4 100%  
5 100%  
6 90% no rules for the new site hits line 
7 100%  
8 90% One query result is misclassified 
9 90% no rules for the new site hits line 
10 90% One query result is misclassified 

Average 95%  
Table 4: The Experimental Result of 10-fold Cross Validation with 2 filters 

Each site has three result pages corresponding to three queries. In the evaluation of accuracy, if 
the hits line for one query is not correctly recognized, then we assume the hits line of the site is not 

Weight = numOfDifferentKeyWords + containOfPattern*(n+ isMaxNumber*m)+ isFirstLine 

open directory  categories  (1-5 of 12) 
home: cooking          (  1172     matches) 
recreation:    outdoors: camping: cooking       (  48 ) 
more...     ]   open directory sites  (1-20 of 3077)                    the real hits line 

Table 3: The Example of Containing Categories Hits and Document Hits After Applying 
Classification Rules 
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correctly recognized. For example, in Table 1, the experiment 8 and 10 show that only one query 
result is not correctly identified, so the hits line of the site is considered not to be correctly 
recognized. Therefore, the accuracy is 90% out of 10 sites. There exist three cases in which a new 
special hits line format is met in testing, but it is not met in learning. Therefore, no rules can be 
applied to these new special cases. However, because of our tree induction algorithm, some other 
non-hits lines come into the result. The main reason that the experiments 3, 6 and 9 have 90% 
accuracy is that new special hits line format is met. If we have enough examples, the average 
accuracy would be 98%. 

Conclusion 
To recognize the document hits line in the search engine query result page, we use two filters to 

filter the lines containing numeric numbers: Classification rules filter and Heuristic filter. Through 
the two filters, the system can automatically recognize the document hits line with a very high 
accuracy of 95%. 

The approaches can be adapted to other purposes of mining Web pages, for example, extracting 
the next page URLs in the result page or some specific information such as address, telephone, and 
so on. 
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