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Abstract. This paper proposes a method of acoustic modeling for zero-resourced languages speech 
recognition under mismatch conditions. In those languages, very limited or no transcribed speech is 
available for traditional monolingual speech recognition. Conventional methods such as IPA based 
universal acoustic modeling has been proved to be effective under matched acoustic conditions 
(similar speaking styles, adjacent languages, etc.), while usually poorly preformed when mismatch 
occurs. Since mismatch problems between languages often appears, in this paper, unsupervised 
acoustic modeling via cross-lingual knowledge sharing has thus been proposed: first, initial acoustic 
models (AM) for a target zero-resourced language are trained using Multi-Task Deep Neural 
Networks (MDNN) – different languages’ speech mapped to the phonemes of the target language 
(mapped data) is jointly trained together with the same data transcribed language specifically and 
respectively (specific data); then, automatically transcribed target language data is used in the 
iterative process to train new AMs, with various auxiliary tasks. Experiment on 100 hour Japanese 
speech without transcripts achieved a character error rate (CER) of 57.21%, 19.32% absolute 
improvement compared to baseline (IPA based universal acoustic modeling).  

Introduction 
Recently, automatic speech recognition (ASR) for low resourced languages has become an active 

research field [1]. Traditional mono-lingual ASR systems require a certain amount of transcribed 
speech data [2]. Since it is not easy (expensive, time-consuming, lack of linguistic experts) to 
collect enough manually transcribed speech data of new low or even zero resourced languages, it is 
a big challenge to build recognition systems for these languages. Acoustic modeling, which 
required a large amount of accurate transcribed speech, is one of the toughest tasks among 
low-resource speech recognition. 

Unsupervised or semi-supervised training using multilingual information is a promising means to 
train AM with low cost. As described in [3], rapid development of an automatic speech recognition 
system can greatly benefit from the use of unsupervised acoustic model training. Initial models, or 
so called seed models, are used to generate transcripts for unsupervised speech [4]. Then, data 
selection [5] [6] (confidence based or majority voting, etc.) is adopted to get more reliable training 
speech. After that, training process might be applied to improve the recognition performance 
iteratively [7] [8]. 

In semi-supervised scene, shared hidden layer multi-softmax deep neural network [9] which is 
jointly trained of supervised and automatically transcript unsupervised data proves to work well 
[10].Whereas, in completely unsupervised scenario, the problem is that, no transcribed data is 
available and it is often hard to build effective seed models. 

An alternative method to build seed model for an unsupervised language is to do phoneme 
mapping, either all languages use a universal phoneme set (for example, IPA – International 
Phonetic Alphabet) or some languages’ phonemes are mapped to others’. Vu et al. demonstrated the 
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effectiveness of phoneme mapping under matched conditions, from Czech to Bulgarian, Croatian, 
Polish, Russian in accordance with IPA [11] [12] similarities. But whether this method works under 
mismatch conditions still remains to be seen. Iterative process is adopted to deal with mismatch 
conditions. In these previous studies, the problem of transcript errors, which might be even harmful 
[10], is serious and has not been solved, especially at the early stage of unsupervised training. 

As introduced above, mismatch conditions and transcription errors are the two main problems 
that multi-lingual unsupervised training involves. In this paper, a new method involves MDNN in 
both initial and iterative training process is proposed to solve these two problems. The remainder of 
this paper is organized as follows. In section 2, we describe our proposed method in detail. Section 
3 presents data resources we use and the baseline system. Section 5 reports the experimental setup 
and results. The study is concluded in section 5 with a summary and an outlook to future steps. 

Proposed Multi-Lingual Unsupervised Training Method 
The multi-lingual unsupervised training method proposed here is aimed to handle the mismatch 

conditions and transcript errors. Three main parts are contained: a) Using language specific data as 
complementary tasks for mapped data, to lower the influence of mismatched data mapping from 
source language to target language, and thus, produce more reliable seed models; b) Acoustic 
stability [11] is used to take the place of confidence based score in the data selection of 
unsupervised training, since confidence scores generated by poorly estimated acoustic models do 
not perform well [13]; c) Iterative process: completely new models trained by MDNN, 
automatically transcribed data for primary task (task that keeps at last), multi-lingual and CI 
information for complementary tasks. 

Firstly, we give a brief introduction of MDNN. Figure 1 shows the typical structure. MDNN is a 
multi-task learning (MTL) technique [14] that improves single-task learning (STL) by training the 
deep neural network (DNN) with several related tasks (each task is an output layer) and some 
shared hidden layers. These secondary tasks are used for the training stage and are dropped in the 
end. 

 

Fig.1. Typical structure of MDNN 
Negative cross-entropy is defined as the objective function of STL-DNN: 
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The parameter matrix θ is optimized with stochastic gradient descent to maximize this objective 
function. The gradient is computed with respect to small mini-batches of training frames, θ is 
updated with a small step size. Some epochs is carried out, each with several iterations to cover the 
complete training set once. 

While in MDNN, new label of training data is prepared for additional task B, C, ⋯ with FB(θ), 
FC(θ), ⋯ being the objective function: 
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All parameters except those in the output layers are shared across tasks. 
MDNN is use in the initial step as follows. First, phoneme mapping is done from source 

language to the target. In this step, two kinds of mapping is adopted: one is forced mapping, which 
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means all source languages' phones are forced to map to the closest target language phone; the other 
is natural mapping, in which IPA phoneme sets are used for both source and target languages. We 
use phoneme-level lexicons and transcripts and only source language phonemes that can be seen in 
the target language's phoneme set are used as useful training data, other phones that are not 
appeared in the target language are seen as OOVs and wiped off. Then, the mapped data is used to 
simulate "target language data" and update the primary task of MDNN while the original source 
data is used to train the complementary tasks. 

In the training step, CI information is added as new complementary tasks for context dependent 
(CD) primary tasks. As CI has proved to be of higher frame accuracy and has more training frames 
for each out senones, especially when training data is limited [15]. Also, it enriches the training data 
and brings down the effect of transcription errors and mismatch problems by joint updating the 
share hidden layers. 

Acoustics stability feature (A-stab) [11] is used in the data selecting step. To compute this feature, 
a number of alternative hypotheses with different weighting between acoustic scores and language 
model (LM) scores is computed. Both forced mapping AM and natural mapping AM is used. Each 
of these hypotheses is aligned against the reference output of the recognition, where the reference 
output is defined as the output with the assumedly best weighting between AM and LM. Here we 
use natural mapping AM (since it give more accurate information) with LM scale 11, which proves 
to be best for the most part by experience. 

For each word of the reference output, the A-stab score is defined as the number of times the 
same word occurs in the set of alternative hypotheses, normalized by the number of alternative 
hypotheses: 
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For each sentences of the reference output, the A-stab score is defined as average of word scores: 

#:
#

word

w
num

s
word

S
Sentence S

num
=
∑

                                                       (4) 

Sentences with score higher than a given threshold are chosen as usable reference. 

Data Resources and baseline system 
The four languages Mandarin, English, Korean and Japanese in our experiment belong to various 

language families or branches. Japanese is the target language while the others act as source 
languages. Table 1 shows the phoneme distributions of Mandarin, English, Korean and their IPA 
phoneme coverage of Japanese. Mismatch problem exists between source and target languages, 
obviously. 

Tab.1. Phoneme distributions 

Languages Language Specific 
Phoneme Number 

IPA Phonemes 
Number 

IPA Phonemes 
Covers Japanese 

Mandarin 66 41 12 
English 39 39 18 
Korean 66 21 15 
Total  66 24 

Japanese 40 46 26 
The source languages data we use are as follows: for Mandarin, we use a 100 hours split of 

LDC2005S15 HKUST Mandarin Telephone Speech; for English, 100 hours data from part 1 of 
fisher dataset is selected; for Korean, we use 100 hours of our self-collected speech. We 
experimentally evaluated the performance of our proposed method on 100 hours Japanese 
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unsupervised data, which is also self-collected. All speech are Conversational Telephone Speech 
(CTS) in 8 KHz 16 bit PCM format. Lexicon size is as follows: 45k words for Mandarin, 63k for 
English, 20k for Korean and 55k for Japanese. LM for Japanese is: 50k 1-gram items, 3544k 
2-gram items, 10609 3-gram items. We did not necessarily need LMs of Mandarin, English and 
Korean. 

The baseline system consists of two parts: initial step and iterative step. In the initial step, we do 
IPA based universal acoustic modeling using Mandarin, English and Korean speech. Then, 
traditional unsupervised iterative process is adopted for Japanese. 

The Kaldi toolkit [16] is used for speech recognition framework. Standard 52-dim PLP feature 
(13-dim together with its 3 deltas), is extracted and used for maximum likelihood GMM model 
training. After that, a DNN-HMM hybrid system is trained using the 52-dim PLP as input and 
GMM-aligned senones as targets. For DNN, an 11-frame window is used in the input layer, we use 
6 hidden layers, each has 2500-250 p-norm neuron with p=2 [17]. 

Mini-batch SGD is used for back propagation. The training starts with an initial learning rate of 
0.008 and ends with a final learning rate of 0.0008 after 10 epochs. 

We train Japanese AM on the 100 hour Japanese with its real transcripts to get a result of 42.23% 
CER, which serves as the upper bound in our experiment. 

Experiments of Proposed Method 
We first evaluate the performance of initial steps. In the proposed method, as described above, 

we use two initial AMs. One is based on the forced mapping, with 40 Japanese phonemes and about 
5000 tri-phone states, lexicons of the three source languages are all in Japanese phonemes and 
merged during training process; the other is based on natural mapping, with 26 Japanese IPA 
phonemes and about 5000 tri-phone states, phoneme lexicons are used so that only the 24 Japanese 
are treated as Japanese In-Vocabulary word. 2 unseen Japanese phonemes are replaced by nearest 
phonemes in source languages. Input and hidden layer config of MDNN is the same as baseline. 
Table 2 gives out CER of the two proposed initial AMs and the baseline initial AM. We evaluate 
performance of different amount of mapped data to validate the effectiveness of shared hidden 
layers. 
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Tab.2. Performance of the Initial Steps 

Model Training 
Method CER (%) 

Baseline IPA Model DNN 76.53 
Forced Mapping Model (300h mapped data) DNN 73.05 
Forced Mapping Model (300h mapped data) MDNN 71.88 
Forced Mapping Model (100h mapped data) MDNN 71.16 
Natural Mapping Model (300h mapped data) DNN 72.84 
Natural Mapping Model (300h mapped data) MDNN 71.20 
Natural Mapping Model (100h mapped data) MDNN 69.83 

As shown above, 6.7% absolute CER decrease is got, using the proposed initial method. Two 
conclusions are drawn: MDNN is useful during initial model training, this is due to usage of 
multi-lingual information and that MDNN lightens the effect of errors in data mapping; a bit 
smaller amount of mapped data is better, since less effect it has on the hidden layer of MDNN. 

               

Fig.2. Quantity of Data and CER, iteration 1      Fig.3. CER performance of Iterative Process 
Then, we experiment to find how quantity of selected data affect performance of the training 

process in the first iteration after initial models. As shown in figure 2, we can see that 60 hours of 
data got the best performance in the training process, iteration 1. There exists a trade-off between 
data quality and quantity. In the following experiments, we use fixed amount of training data, 60 
hours. 

We give out performance of each iteration in our proposed method in figure 3. We can see that 
CER of Japanese decreases obvious, especially in the early stage of the iterative process. We get 
12.62% absolute CER decrease compared to the initial step. 

Conclusion 
In this paper, we apply shared hidden layer MDNN in our unsupervised AM training. Data 

mapping is used to simulate training data for the unsupervised language. Although mismatch 
problem appears, we can get initial AM for the unsupervised language in its own phoneme and 
lexicon resource. Iterative process of training can deal with the mismatch conditions and get better 
performance. With 100 hours unsupervised data, our proposed method achieved CER of 57.21%, 
19.32% absolute improvement compared to baseline. This result demonstrates the possibility of 
building AMs inexpensively. It would be interesting to investigate whether adaptation method can 
be used in the iterative process to interact with training process and benefit from each other. There 
still remains 14.98% absolute CER improvement to reach the upper bound of unsupervised training. 
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