
 

A parallel HEVC encoder scheme based on Multi-core platform 
Shu Jun1,2,3,a, Hu Dong1,2,3,b 

1Education Ministry’s Key Lab of Broadband Wireless Communication and Sensor Network 
Technology 

2Education Ministry’s Engineering Research Center of Ubiquitous Network and Health Service 
System 

 3Jiangsu Province’s Key Lab of Image Procession and Image Communications, Nanjing University 
of Post and Telecommunications, Nanjing, 210003, China 

aemail: 1013010606@njupt.edu.cn, bemail: hud@njupt.edu.cn 

Keywords: HEVC; multi-core platform; parallel processing; frame-level; CTB-level 

Abstract. In this paper, we propose a parallel HEVC encoder scheme based on multi-core platform, 
which provides maximized parallel scalability by exploiting two-level parallelism, namely, the 
frame level parallelism and the CTB level parallelism. Inspired by the intra-CTB row level 
parallelism of WPP in HEVC, we investigate the inter-frame CTB prediction dependency to its 
reference CTBs, and find the inter-CTB correlation. Using this inter-correlation, we divide a frame 
into CTB units and create CTB-row level coding threads when their corresponding reference CTBs 
are available. Each thread is bonded to a processing core, therefore, both intra- and inter-CTB rows 
can be encoded in parallel. Moreover, we introduce a priority scheduling mechanism to control the 
coding threads. Experiments on Tilera-Gx36 multi-core platform show that, compared with serial 
execution, the proposed method achieves 3.6 and 4.3 times speedup for 1080P and 720P video 
sequences, respectively. 

1. Introduction 
Recent increasing demands on video coding support for higher resolutions in consumer devices 

are driving the video coding development to higher compression rates. To meet these demands, the 
Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T and ISO/IEC Moving Pictures 
Experts Group has developed a new video coding standard, the High Efficiency Video Coding 
(HEVC) [1]. The HEVC project aims at reducing the bitrate compared to the previous H.264/AVC 
by another 50%. However, the cost paid for higher coding efficiency is much higher computational 
complexity. Then, the HEVC encoders are expected to be more complex than the H.264/AVC 
encoders [2], and parallelism has to be considered in real-time HEVC encoding. With the 
development of multi-core Digital Signal Processor (DSP) platform, parallelizing HEVC encoding 
on such platforms is of extreme importance to deal with this problem [3]. 

In the video coding layer of HEVC, the same hybrid approach (intra-/inter- picture prediction 
and 2-D transform coding) as that of H.264/AVC [4] is employed. Fig.1 depicts the block diagram 
of a hybrid video encoder, which could create a bitstream conforming to the HEVC standard. As 
Fig.1 shows the main modules in HEVC encoder includes intra-/inter-prediction, transformation 
and quantization, inverse transformation and inverse quantization, entropy coding and loop filtering, 
etc. Compared with H.264/AVC, the complexity of HEVC is mainly reflected as follows: In HEVC 
the motion compensation uses the same quarter pixel motion resolution, but the derivation of 
interpolated pixels is generalized by using a larger 8-tap and 4-tap interpolation filter for luma 
chroma respectively. Intra-prediction is generalized as well by parameterization of the predicted 
angle, allowing 33 possible different angles. The transform is still an integer transform but allows 
more block sizes, ranging from 4×4 to 32×32 with higher internal processing precision. HEVC also 
defines a more efficient block structure, called Coding Tree Block (CTB). The sequence is coded by 
CTB of size 16×16, 32×32, or 64×64 pixels. Each CTB can be recursively subdivided using 
quad-tree segmentation in coding units (CUs), which can in turn be further subdivided into 

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) 

© 2016. The authors - Published by Atlantis Press 375



 

prediction units (PUs) and transform units (TUs). Coding units can be subdivided down to a 
minimum CU of size 8×8. The minimum prediction unit size is 4×8 and 8×4, and minimum TU size 
is 4×4 pixels [5]. 

As we can see, the computational complexity of HEVC encoding is huge. It is unlikely that 
single core processor can encode a 1080P or higher resolution HEVC video in real-time. This paper 
will present a new parallel scheme on the multi-core platform. In particular, our contributions can 
be summarized as follows: 

1) Inspired by Wavefront Parallel Processing (WPP) of HEVC and the intra-CTB row level 
parallelism, we investigate the inter-frame CTB prediction dependency to its reference CTB, and 
find the inter-CTB correlation. 

2) Based on intra-CTB and inter-CTB correlation, we divide a frame into CTB units and create 
CTB-row level coding threads when their corresponding reference CTBs are available. Each thread 
is bonding to a single processing core, so intra- and inter-CTB rows can be encoded in parallel. 
Moreover, we introduce a priority scheduling mechanism to control these coding threads. Hence, 
the frames and CTBs are processed in parallel, both frame-level and CTB-row-level parallelism are 
realized. 

3) We test the proposed parallel encoding scheme on a multi-core platform, the Tilera-Gx36 
system with 36 cores running at 1.2GHz, for 1080P and 720P video sequence respectively. We 
compare the proposed approach with serial execution of x265 reference software both in terms of 
speedup and PSNR to prove the efficiency of the proposed parallel scheme. 

The rest of this paper is organized as follows. Section 2 introduces the parallelization strategies 
of HEVC and analyzes the dependencies of inter-frame CTBs. In Section 3, the proposed parallel 
scheme is described in details. Experimental results and their analysis are presented in Section 4, 
followed by a short conclusion in section 5. 

 
Fig.1. General diagram of the HEVC encoder 

2. Parallelization Strategies in HEVC 
The current HEVC standard contains several strategies aiming at better parallel processing. In 

H.264/AVC, there are frame-level, slice-level or macroblock-level parallelism [6]. Take slice-level 
parallelism for example, a picture can be partitioned in multiple arbitrarily sized slices for 
independent processing, having multiple slices in a picture, however, degrades objective and 
subjective quality due to slice boundary discontinuities and increases significant coding losses. In 
order to overcome the shortage of the parallelization strategies employed in H.264/AVC, two tools 
have been included in the HEVC standard: Wavefront Parallel Processing (WPP) and Tiles. Both of 
these tools allow subdivision of each picture into multiple partitions that can be processed in 
parallel. 

376



 

2.1 Wavefront Parallel Processing 
When WPP is enabled, a picture is divided into several CTB-rows and every row can be assigned 

to a core [7]. The first row is processed in an ordinary way, the second row can begin to be 
processed after two CTBs have been encoded in the first row, the third row can begin to be 
processed after two CTBs have been encoded in the second row, etc. Compared to slices, no coding 
dependences are broken at row boundaries. Additionally, CABAC probabilities are propagated from 
the second CTB of the previous row, to further reduce the coding losses (Fig.2). Also, WPP does not 
change the regular raster scan order. Furthermore, a WPP bitstream can be losslessly transcoded 
to/from a nonparallel bitstream with only an entropy-level conversion [8]. 

2.2 Investigation on Inter-Frame Dependency 
Although WPP makes the intra-frame parallelism easier, the parallelism is limited. Due to the 

intra-frame dependency, WPP does not allow all the rows to start being encoded simultaneously, so 
rows cannot be finished at the same time, which will make parallelization inefficiency.  

As is discussed above, the wavefront parallelism still can be improved. To maximize parallel 
scalability, we combine inter-frame level parallelism with intra-CTB row level parallelism. So 
analyzing the CTB dependency to its reference CTBs inter-mode frame, the inter-frame dependency, 
is necessary. 

In order to improve the encoding performance, HEVC requires the reconstructed frames as  
reference pictures to deal with time redundancy, thus achieving inter-CTB row level parallelism 
must consider inter-frame dependency. Before a CTB in current frame can be encoded, all of its 
reference CTBs in the searching range must be available. Inter-CTB row level parallel approach is 
shown in Fig.3, it can not immediately be encoded when the first row in Image 0 has been encoded, 
because the motion estimation search range is larger than a CTB-row. In order to predict accurately, 
we have to wait the coding unit being reconstructed. If the motion estimation search range is twice 
as big as a CTB unit, the first CTB in upper left corner of image 1 can not be encoded unless the 
third row in image 0 is reconstructed [9]. 

As shown in Fig.3, the current coding CTB in Image 1 can be encoded with the CTB in Image 0 
simultaneously. Therefore, as long as there no inter-frame CTB prediction dependency exists, some 
CTBs in Image 1 and Image 0 can be encoded simultaneously. By introducing the inter-parallel, we 
improve the parallel speedup significantly. 

          
  Fig.2 WPP processes rows of CTBs in parallel            Fig.3 inter-CTB level parallelism 

3. Proposed Parallel Encoding Method 
According to the data dependence analysis of the inter-frame parallelism, this section we will 

present the proposed parallel method, we divide our work into two parts, the first part describes the 
proposed method in details and the second part, the priority scheduling mechanism, is presented to 
control the coding threads, which is essential to our scheme. 

377



 

3.1 Combine intra-CTB row Level Parallelism With Inter-frame Parallelism 
Our proposed scheme combines intra-CTB row level parallel processing with inter-frame parallel 

processing. Compared to single granularity, multi-granularity division can achieve higher speedup. 
In fact, the inter-frame level parallelism is not at the level of the frame, but calls inter-CTB row 
level parallelism to complete the final coding process. 

The proposed scheme is based on multi-core platform. Using the parallel programming 
technology like task pool and thread pool, we assign tasks to frames that can be coded, each task 
has a separate memory space to store parameter information of each frame, a plurality of 
frame-level tasks share a common thread pool. Therefore, several frames can be encoded in parallel, 
which called inter-frame level parallelism. Then according to the received parameters, we create 
multiple CTB-row level tasks which call threads to complete the coding, and bind each thread to the 
corresponding CPU core. The proposed scheme further uses homogeneous multi-core platform’s 
shared memory model to achieve multi-thread synchronization. It can parallel encoding intra- and 
inter-CTB rows only when the dependencies are eliminated, by checking intra- and 
inter-dependency flag, we can achieve CTB-row level parallelism. The specific process is shown in 
Fig.4. 

 
Fig.4 the scheme of combine intra-CTB level parallelism with inter-frame level parallelism 

3.2 Priority Scheduling Mechanism 
As Fig.4 shows to us, two priority queue structures are introduced to implement the proposed 

scheme. In the main coding thread, first reading a picture, adding it to frame-level task queue and 
then continue reading frames if the queue is not full. When the buffer is full, by using task pool 
technology, we assign tasks to frames that can be encoded in the queue, each task has a separate 

378



 

memory space to store parameter information of each frame, a plurality of frame-level tasks share a 
common thread pool. But in fact, the inter-frame level parallelism is not at the level of the frame,  
but by calling inter-CTB row unit to complete the final coding process.  

In this paper, as the smallest parallel granularity, a CTB-row calls an idle thread in thread pool to 
encode it and add it to CTB-row level task queue. To determine the CTB-row coding order, we 
define two-level priority of CTB-row task queue. The first one is the inter-level and the second is 
intra-level, inter-level of priority level is higher than intra-level, that means if both inter-CTB row 
and intra-CTB row are well prepared be encoded, the inter-CTB row enter the queue first. 
Specifically, the inter-level of priority specifies while in the task queue, if several CTB-rows in 
different frames are ready to be encoded, the CTB-row which has the smallest frame number in 
frame-level task queue joins the queue first, similarly, the intra-level specifies if several CTB-rows 
in the same frame are prepared be encoded, the CTB-row with the smallest line number adds to the 
queue first. 

Two-level task queue is depicted in Fig.5, each CTB-row task in the CTB-row level task queue 
will call an idle thread to encode it, until there are no threads available in thread pool, then the 
CTB-row task in the task queue have to wait for a new idle thread, once there is a CTB-row finish 
being encoded, the coding thread rejoins the thread pool for other CTB row-level task calls. It is 
worth noting that the CTB-row coding work is carried out serial, one CTB by one CTB. For 
CTB-rows in I frame, multiple CTB-rows can be parallel encoded when intra-frame data 
dependency eliminates, and for CTB-rows in non-I frames, we need to consider inter-frame data 
dependency, due to the need of reconstructed pixels to deal with time redundancy, therefore, only 
the corresponding CTB-rows in reference region are reconstructed, can CTB-row thread be opened 
to achieve intra- and inter-CTB parallel processing. 

4. Experimental results 
In order to compare our proposed parallel method with serial execution, we adopt HEVC 

reference software x265, which supports WPP and includes all feature of the main profile [10]. The 
experimental platform is Tilera-Gx36, which is a member of TILERA multi-core processor family 
with 36 cores. In order to avoid the impact of special platform, we do not use any Tilera-Gx36 
platform-dependent optimizations. The test sequences are Kimono of 1080P resolution and 
Fourpeople of 720P resolution. In our work, we implement the proposed parallel method on x265, 
CTU size set 32×32, so there are more CTB-rows to be parallel encoded, QP unified set 27, similar 
results are observed for other QPs. More detail experimental environments and conditions are 
written in Table 1. 

Table 1. Experimental Platform and Test Conditions 
Processor TILE-Gx8036 

Architecture TILE-Gx 
Number of cores 36 

Frequency (single core) 1.2GHz 

Operating system Tilera MDE-4.0.3.1415127 

Compiler GCC 4.6.3 
Test sequences Kimono , Fourpeople 

Reference software x265 
Encoding Conditions QP: 27 

To evaluate the efficiency of our proposed parallel method, we use four index to compare our 
proposed method to original method in x265. The fps denotes coding rate, the PSNR and Bitrate are 
used to measure the change of picture quality and the speedup of our proposed method can be 
calculated as follows:  

379



 

proposed

serial

T
TSpeedup =                                                             (1) 

Where serialT  and proposedT  are respectively the coding time of serial execution and our proposed 
method. Table 2 shows the parallel performance of our proposed parallel method compare to serial 
execution. And Fig.6 shows the speedup of two sequences. 

Table 2. Experimental Results of Our Proposed Parallel Method 

Class 
Threads 
number 
(cores) 

Original method Proposed method 
fps PSNR 

(dB) 
Bitrate(kbps) fps PSNR 

(dB) 
Bitrate(kbps) 

 
Kimono 
(1080P) 

2 

 
2.65 

 
38.403 

 
1771.60 

3.03 38.394 1792.63 
4 4.44 38.394 1792.63 
8 6.31 38.394 1792.63 

16 7.84 38.394 1792.63 
24 8.52 38.394 1792.63 
32 9.46 38.394 1792.63 
36 9.31 38.394 1792.63 

Fourpeople 
(720P) 

2 

3.94 27.870 25006.86 

5.76 30.112 25117.76 
4 8.32 27.857 25117.76 
8 10.71 27.857 25117.76 

16 13.55 27.857 25117.76 
24 15.01 27.857 25117.76 
32 16.75 27.857 25117.76 
36 16.69 27.857 25117.76 

From Fig.6 and Table 2, we get three major observations: 
1) Compare to original method in x265, our proposed method has a little change in PSNR and 

Bitrate, this may results from parallel processing more CTB-rows, weaken the relevance of 
inter-frames, so that the image quality has declined. 

2) The speedup of our proposed method behaves good when less than 32 cores but the upward 
trend gradually become flat from this point, this result may due to inter-core synchronization and 
communication costs. 

3) Compare with serial execution, our proposed method achieves 3.6 and 4.3 times speedup for 
1080P and 720P video sequences, respectively. 

  
    Fig.5 the two-level task queue model           Fig.6 Speedup of proposed method  
                                               using different number of cores 

380



 

5. Conclusion 
In this paper, in order to improve the speedup of HEVC encoder, a parallel scheme based on 

multi-core platform is proposed. On the basis of intra-frame CTB-row level parallelism, we exploit 
inter-frame parallelism to achieve intra- and inter-CTB multigrain parallelization. Meanwhile, we 
introduce a priority scheduling mechanism to control these coding threads. Experimental results 
shows the new scheme improve the parallel speedup with a little change in PSNR and Bitrate, but 
we only test CTU size 32×32 and do not consider the effect of other CTU size like 64×64. How to 
choose suitable CTU size of different video sequences is the direction of our future research. 

References 

[1] G.J.Sullivan and J.-R.Ohm. Recent developments in standardization of high efficiency video 
coding (HEVC). Proc.SPIE, Aug.2010, p.77980V. 

[2] F.Bossen, B.Bross, K.Sühring and D.Flynn. HEVC complexity and implementation analysis.  
IEEE Trans.Circuits Syst.Video Technol, vol.22, no.12, pp.1684-1695, Dec.2012. 

[3] S.Borkar and A.A.Chien. The future of microprocessors. Commun.ACM, vol.54, pp.67-77, May 
2011. 

[4] G.J.Sullivan, J.-R.Ohm, W.-J.Han and T.Wiegand. Overview of the High Efficiency Video 
Coding (HEVC) standard. IEEE Trans.Circuits Syst.Video Technol, vol.22, no.12, pp.1648-1667, 
Dec.2012. 

[5] C.C.Chi, M.Alvarez-Mesa, B.Juurlink, G.Clare, F.Henry, S.Pateux, and T.Schierl. Parallel 
scalability and efficiency of HEVC parallelization approaches. IEEE Trans.Circuits Syst.Video 
Technol, vol.22, no.12, pp.1826-1837, Dec.2012. 

[6] B.Juurlink, M.Alvarez-Mesa, C.C.Chi, A.Azevedo, C.Meenderinck and A.Ramirez. Scalable 
Parallel Programming Applied to H.264/AVC Decoding. Berlin, Germany: Springer, 2012. 

[7] F.Henry and S.Pateux. Wavefront parallel processing. Tech.Rep.JCTVC-E196, Mar.2011. 

[8] G.Clare and F.Henry. An HEVC transcoder converting non-parallel bitstreams to/from WPP.  
Tech.Rep.JCTVC-J0032, May 2012. 

[9] WEI Fei-fei, LIANG Jiu-zhen, HAN Jun. A Parallel X264 Encoder Algorithm Based on the 
Inter-Frame and Intra-Frame Macroblock-Level. Computer Engineering & Science, vol.33, No.7, 
2011. 

[10] x265 project, multicoreware, https://bitbucket.org/multicoreware/x265/src/e7424e0cb60f4bb08 
e7d519a49ff9ab77d6fe713/source/common/vec/dct-sse3.cpp? at=default. 

381




