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Abstract. Collaborative efforts are inevitably demanded when solving a complex problem, 
which is often plagued with incomplete, ill-structured, and poor quality information. Therefore, a 
global knowledge modeling framework is required for cross-domain knowledge coordination. 
However, current knowledge modeling techniques pay little attention to temporal knowledge that 
is indispensable for navigating cross-domain collaborative task executions and their collabora-
tion. In view of this challenge, a novel knowledge modeling framework, named POTMe, is in-
vestigated in this paper. This knowledge modeling framework provides a structured application 
context by articulating knowledge dependencies and temporal dependencies among problem-
solving activities. The main contribution of this paper is twofold. First, this novel knowledge 
modeling framework provides a structured problem solving context. It enhances the consistency 
of global knowledge coordination among collaborative problem-solving activities. Second, tem-
poral knowledge modeling is incorporated into this knowledge modeling framework. It is reified 
by a temporal reasoning rule, and aims at evaluating cross-domain task collaboration in an incor-
porated executive environment. 

Introduction

Complex problem solving is a cognitively difficult task and often requires collaborative efforts 
[1][2][3][4][5]. New product development [2], distributed software engineering [3][4], and dis-
ease diagnosis and remedy [5] are typical examples of complex problem solving that require col-
laborative endeavors. The related problem solving processes often consist of human-engineered 
activities [3][6]. Robillard [3] believed that a human-engineered activity could be characterized 
by three traditional engineering activities, i.e., 1) stakeholders define their needs and require-
ments, 2) engineers design the product based on stakeholders’ definitions, and 3) producers build 
the product based on engineers’ designs. These activities are often accompanied by cross-domain 
knowledge sharing and collaboration. The first and second activities could be characterized by 
product conceiving behaviors. The third activity could be featured by product producing behav-
ior based on the product blueprint. 

In collaborative problem solving, qualitative problem-defining process equal to a group of 
product conceiving behaviors, while quantitative parameter computing and verifying process 
could be treated as a group of product producing behaviors. Generally, they are two different ap-
plication stages. The first stage mainly concentrates on preliminary knowledge discovery with 
qualitative problem cognition [3][5][7][8]. The second stage mainly focuses on verifying the 
problem specification derived from the first stage, through concrete parameter computing activi-
ties [6][9][10][11]. In practice, a complex problem and its collaboration solving are often initiat-
ed by incomplete, ill structured and poor quality information. It is always a challenging endeavor 
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to coordinate task executions and their collaboration, if there is no a knowledge modeling 
framework for navigating collaborations of task executions [1][2][6][12]. A knowledge modeling 
framework always aims at reducing conflicts and producing better solutions for collaboration 
problem solving, through articulating the knowledge-dependency relations among task execu-
tions and their collaboration[13][14]. It plays as a global mental model for knowledge sharing by 
all the teammates engaged in collaborative problem solving, through which numerous human 
thoughts and actions could be coordinated in a compatible way [3][15]. 

In the past few years, some knowledge modeling frameworks, such as Generic Tasks Struc-
tures [16], Role-Limiting Methods [17], CommonKADS [18], MIKE [19], Components of Ex-
pertise [20], have been proposed in the knowledge management community. Generally, current 
knowledge modeling techniques [16][17][18][19][20] pay little attention to temporal knowledge. 
In practice, collaborative problem solving parallels a group of knowledge-intensive task execu-
tions. To satisfy an expected deadline of a task execution or collaboration, temporal knowledge 
should be incorporated into a knowledge modeling framework for scheduling cross-domain 
knowledge coordination [21][22][23][24]. For example, such time interval descriptions as “be-
fore we calculate the total weight value of a new product, we should get every part’s weight val-
ue in advance”, and “function A could only be triggered after it receives a parameter b produced 
during function B’s execution” indicate two typical temporal relations. The first temporal relation 
is initiated by an inherent knowledge-dependency relation that the weight of a new product is the 
total weight of all parts. The second temporal relation is also initiated by a cross-domain 
knowledge dependency that function A demands a parameter b produced by function B, other-
wise it could not be triggered. Furthermore, as mentioned in [9], “scheduling deals with the as-
signment of jobs and activities to resources and time ranges in accordance with relevant con-
straints and requirements.” Here, knowledge dependency relations among task executions are 
typical “relevant constraints and requirements” in scheduling application. Therefore, to incorpo-
rate temporal knowledge into a knowledge modeling framework is helpful for enhancing cross-
domain knowledge coordination among task executions. In this regard, current knowledge mod-
eling techniques as presented in [16][17][18][19][20] mainly aims at set up a structured organiza-
tion for articulating problem-solving components at knowledge-level,  rather than scheduling ap-
plication of knowledge-based collaboration [9]. 

In view of this observation, a novel knowledge modeling framework, named POTMe, is inves-
tigated in this paper. This framework not only articulates problem-solving components of a com-
plex problem for cross-domain knowledge coordination, but also incorporates task execution-
related temporal knowledge into its specification for further scheduling application. 

The remainder of this paper is organized as follows. In Section2, a motivating example is put 
forward for highlighting the core research issues to be explored in this paper. In Section3, a 
POTMe framework is proposed based on problem-solving context analysis. In Section4, tem-
poral knowledge modeling with regard to POTMe framework is investigated. In Section5, related 
works and comparison analysis are presented to evaluate the feasibility of our proposal. Finally, 
the conclusions and our future work are presented in Section6. 

A Motivating Example 

Here, a new product development is presented for highlighting the key topics that will be investi-
gated in this paper. Fig.1.a illustrates a framework of an expected mobile crane product, whose 
functional units are indicated by a set of ontology definitions. In practice, product-defining pro-
cess is often initiated by incomplete, ill structured and poor quality information derived from 
stakeholders’ requirements. Generally, to satisfy the stakeholders’ requirements, designers often 
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make decisions in an empirical manner by using their personal knowledge or experience 
achieved from the past related produce development. Typical, it has been widely cited that most 
managers/designers often refer to solutions of the similar problems as the first step for their new 
design tasks [25][26]. Therefore, a solution of similar project is very helpful for a new project. 
For instance, an existing product of a truck crane as illustrated in Fig.1.b would be referred to, if 
its truck crane’s boom, chassis, turning platform or outrigger were similar to the expected mobile 
crane. If so, the assembly and operation regulations enacted among these functional units could 
also be referred to for new mobile crane development.  

Here, Fig.1.a serve as a knowledge modeling framework for incorporating stakeholders’ re-
quirements and existing knowledge assets into designers’ perception of expected product [1][15]. 
It provides a helpful global mental model to be shared by the participant teams or members for 
conceiving the expected product, as well as for their later design and manufacturing activities [1].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. An expected crane product and its available analogue for its development. 
Moreover, to gain and retain business advantages in a competitive business arena, design and 

manufacturing activities should be effectively orchestrated for timely responding to market re-
quirements. Here, scheduling application is often navigated by knowledge-dependency relations 
specified by the knowledge modeling framework as illustrated by Fig.1.a. For example, in 
Fig.1.a, there are certain assembly relations between hoist rope and latticed boom. Here, the 
length of a hoist rope is calculated only after the outline dimension of latticed boom and its jib 
are determined. If the start time and the end time of a task execution engaged in this collabora-
tion could not be specified in a quantitative way, its uncertain working status would greatly influ-
ence other task executions that have knowledge and temporal dependencies with it. It typically 
indicates a kind of execution-related temporal knowledge. Therefore, temporal knowledge mod-
eling should be incorporated into a comprehensive knowledge modeling framework in a compat-
ible way.   
Accordingly, two interesting topics could be drawn out from the example to highlight the motiva-
tions of this paper. 
(1)To incorporate stakeholders’ requirements, designers’ perceptions and past experience into 
new concrete product design and manufacturing process, a well structured knowledge modeling 
framework is demanded. It plays as a global shared mental model for cross-domain collaboration 
among product conceiving, product design and product manufacturing activities. 
 (2)To orchestrate problem-solving activities and their cross-domain collaboration for satisfying 
certain deadline, temporal knowledge modeling should be incorporated into a structured 

(a). An expected crane product (b). A referred crane product 
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knowledge modeling framework in a compatible way. It is often reified by a group of temporal-
dependency relations among task executions. Here, temporal knowledge modeling is indispensa-
ble for evaluating new product development from scheduling application perspective. 
Initiated by the first topic, a novel knowledge modeling framework, named POTMe, is firstly 
investigated in Section3. In Section4 and Section4, some issues with regard to POTMe‘s tem-
poral knowledge modeling would be discussed initiated by the second topic as listed above. 

A	Knowledge	Modeling	Framework	POTMe	

Now, accessing to a wide range of information is easy. However, the increasing size of complex 
problems makes it more and more difficult to absorb all pertinent information in a timely manner 
[25][26][27][28][29]. With the goal of gaining comprehensive insights, the following issues 
should be taken into consideration for modeling a complex problem in knowledge level. 

(1)How to deal with the complexity of a complex problem object for its collaborative solving?  
In the past decade, object-oriented decomposition technology has been proved as an effective 

method for degrading the complexity of problem specification, no matter for qualitative problem 
cognizing or for quantitative problem solving [30][31][32][33]. Taking advantage of this tech-
nology, a complex problem could be decomposed into a set of domain problem ontology in a hi-
erarchical way for further cognizing and solving [27][28][30][34][35]. Once a complex problem 
is specified by a set of domain problem ontologies, all the domain-specific knowledge could be 
absorbed from different perspectives for collaborative problem solving   

(2)How to specify knowledge-dependency relations in collaborative problem solving? 
In [36], ontologies are treated as “agreements about shared conceptualizations”. Here, the 

shared content between two domain problem ontology typically indicates knowledge-
dependency relations among task executions engaged in collaborative problem solving. In prac-
tice, attributes are key issues for specifying an ontology [35]. The associations among attributes 
of domain problem ontologies essentially state knowledge-dependency relations for collaborative 
problem solving. Therefore, taking advantage of object-oriented decomposition techniques, we 
not only disclose latent domain problem ontologies encompassed in a complex problem, but also 
specify knowledge dependency among domain problem ontologies for collaborative problem 
solving [35]. Here, we believe that domain problem ontologies and their attributes are always 
fulfilled by attribute-driven task executions, and collaboration among task executions is often 
initiated by knowledge dependency among attributes of domain problem ontologies 

(3)How to schedule task executions and their collaboration? 
Collaborative problem solving is often enabled by a group of knowledge-intensive task execu-

tions. Moreover, a task execution is often promoted in a collaborative context initiated by 
knowledge-dependency relations as we discussed above. Accordingly, temporal scheduling of 
task executions and their collaboration should be compatible with knowledge-dependency rela-
tions specified among task executions [28][34][37][38][39]. How to incorporate temporal 
knowledge into the collaborative context for promoting collaborative problem solving is a key 
issue that will be investigated in this paper. 

(4)How to promote task execution with domain knowledge support? 
As mentioned in [40], domain knowledge does strongly depend on particular task at hand. In 

practice, execution-specific domain knowledge is often reified into a group of problem-solving 
methods. If problem-solving methods could be discovered or determined in advance, task sched-
uling would be successfully put into effect. Otherwise, task executions of collaboration problem 
solving would be in a logjam state, if we cannot find an effective solving proposal for task execu-
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tions. Therefore, specifications of task-oriented problem solving methods should also be incorpo-
rated into task execution and collaborative context [31][33][41][42][43].  

In view of these observations, a knowledge modeling framework, named POTMe, is presented 
in this section for promoting collaborative problem solving. This framework not only incorpo-
rates problem cognition-related knowledge into its specification, but also incorporates task exe-
cution-related knowledge, especially temporal knowledge, into its comprehensive application 
context. In its application logic, it covers all the key knowledge assets associated with Problem 
Ontology definition, Task scheduling, and Method discovery.  

Definition1. POTMe framework is formally represented as a mapping from a six-dimensional 
space of {P, A, KR, T, M, TR} to collaborative problem solving. The notations are depicted as 
below: 
Complex problem, P = {SubP1,…, SubPn}. P consists of a set of domain problem ontology 

that will be assigned to a group of tasks for problem solving. 
Here, please note that a domain problem ontology is essentially a problem that are not yet 

solved at this stage. To highlight its current state, we will use SubPi to indicate a domain problem 
ontology in this paper. 
Attributes, A. For each domain problem ontology, SubPi, there is an Ai uniquely associated 

with SubPi. Here, Ai stands for a set of attributes. It consists of all the attributes of SubPi, i.e., Ai 
= {ai-1, …, ai-m}, in which ai-x stands for a attribute or a set of attributes associated with a unique 
task execution. 
Knoweldge-dependecy Relations, KR = {KRi-j|i  1, …, n; j1, …, n}. KRi-j stands for a di-

rected knowledge-dependency relation between SubPi and SubPj. In this paper, it is specified by 
the associated relations between Ai and Aj, i.e., KRi-j = Ai  Aj. If ij, KRi-j indicates a cross-
domain knowledge-dependency relation between two different domain ontologies of SubPi and 
SubPj, that is, Aj-around calculating process depends on Ai-around calculating process. If i=j, 
KRi-j indicates an internal knowledge-dependency relation among ai-x inside SubPi, in which ai-

xAi is held. 
Here, P, A, and KR indicate basic knowledge assets for qualitative problem cognition. Initiated 

by knowledge dependency, collaborative problem solving could be formalized into (Sub-
Pi.Ai)KRi-j(SubPj.Aj) in logic through articulating the relations among attributes of domain prob-
lem ontologies, where i  1, …, n; j1, …, n. It is essentially navigated by Knoweldge-dependecy 
Relations KR. To verify domain problem ontologies and their attributes, attribute-driven task 
specifications and task execution-related knowledge assets should be taken into consideration for 
further application. 
Tasks, T. For each domain problem ontology, SubPi, there is a Ti uniquely associated with 

SubPi. Ti stands for a task domain that consists of a set of task specifications for calculating Sub-
Pi’s attributes Ai, i.e., Ti = {ti-1, …, ti-m}, in which ti-x stands for a attribute-driven task execution. 

In practice, a task execution may fulfill a group of ai-x (See our case study in Section5). Here, 
for better understanding the mapping relation between Ti and Ai, we suppose that there is just one 
uniquely task ti-x, ti-xTi, for fulfilling ai-x, ai-xAi, that is, there are just m task to be assigned for 
respectively achieving the m attributes contained in Ai‘s definitions. Furthermore, ti-x(ai-x) is used 
to indicate a task execution for fulfilling ai-x. 
Methods, M. To promote Ti’s executions in knowledge level, a Mi is uniquely associated with 

Ti’s executions for fulfilling SubPi’s attributes Ai, i.e., Mi = {mi-1, …, mi-m}, in which mi-1 stands 
for a task-oriented solving method. 

Here, for brevity and without the loss of generality, for the mapping relations between Ti and 
Mi, suppose that there is just one solving method mi-x, mi-xMi, associated with ti-x’s execution. 
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Temporal-dependecy Relations, TR = {KRi-j: TRi-j|i  1, …, n; j1, …, n}. TRi-j stands for a 
directed temporal-dependency relation between Ti and Tj, that is, Tj’s execution depends on Ti’s 
calculating process. If ij, TRi-j indicates a cross-domain temporal-dependency relation between 
two different task executions of Ti and Tj. If i=j, TRi-j indicates an internal temporal-dependency 
relation among ti-x inside Ti, in which ti-xTi is held. In application logic, TRi-j is initiated by KRi-j 
specification, that is, if there is no knowledge-dependency relation between two task executions, 
no temporal-dependency would be taken into consideration in their executions.  

T, M, and TR indicate task execution-related knowledge assets for quantitative problem solv-
ing and collaboration. Moreover, TR subscribes to Allen’s [22] representation of standard time 
and relations. Has-Earliest-Start-Time, Has-Latest-Start-Time, Has-Earliest-End-Time, and Has-
Latest-End-Time as specified in [9] are typical temporal specification for TR’s knowledge mod-
eling. 

In Definition1, for collaborative problem solving, its knowledge modeling process consists of 
two knowledge-based application levels for heuristic knowledge discovery. The first application 
level focuses on problem cognition. Knowledge exploration mainly aims at recognizing the on-
tology and their attributes engaged in a problem domain, as well as the associations among the 
attributes. The second application level focuses on task executions for fulfilling and verifying 
problem specification derived from the first level. Knowledge exploration mainly aims at con-
ceiving or selecting a suitable method for fulfilling required functions or attributes based on cer-
tain temporal discipline.  

Current knowledge modeling techniques [16][17][18][19][20] often pay attention to problem 
analysis and knowledge discovery. They often take little consideration of temporal knowledge in 
their application. In practice, temporal knowledge is demanded in a wide range of disciplines. 
Coordination among task executions and their collaboration often benefit from certain temporal 
knowledge modeling [22][24][44]. In our research, issue of temporal knowledge is incorporated 
into a comprehensive knowledge modeling framework as defined in Definition1. In the following 
sections, we mainly focus on investigating how to incorporate TR‘s temporal knowledge model-
ing into POTMe framework, by knowledge-dependency analysis. 

Here, we will conclude this section with some discussions around the example presented in 
Section2, for demonstrating POTMe‘s typical application from requirement engineering perspec-
tive [45]. In Section6, it would be investigated in detail to demonstrate the deployment of POT-
Me framework. 

(1) What is Complex problem P? 
For the motivating example presented in Section2, an expected truck crane illustrated by 

Fig.1.a indicates a complex problem P. In its ontology specifications, Boom, Hydraulic System, 
Turning Platform, Chassis, Outrigger, Power System, Electrical Operation System, and Attach-
ments are typical domain problem ontologies.  

(2) How to specify Attributes A? 
Here, we take domain problem ontology of Boom as an example to specify its typical attributes 

(i.e., ABoom). 
 What is the type of boom construct: a latticed boom or a trunk boom? 
 If boom’s profile is a trunk type, what is its profile in geometrical shape: a hexagonal boom 

profile, an oviform boom profile or an all-round octagonal boom profile?  
 How many sections encompassed in the boom: three sections, four sections, five sections, or 

six sections?  
 Is there a jib structure? If so, how many sections encompassed in the jib: one sections or two 
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sections? 
 What is the style of its telescoping system: single cylinder plus wire ropes or double cylin-

ders plus wire ropes? Synchronous extension or asynchronous extension?  
 What is its lifting capacity curve? 
According to these analyses, ABoom={Trunk, Oviform profile, 4-Sections, 2-Section folding jib, 

Synchronous-Extension, 50t} indicates a list of typical attributes associated with domain problem 
ontology of Boom. 

(3) How to specify Knoweldge-dependecy Relations KR? 
Fig.1.a typically illustrates assembly and operation relations among domain problem ontolo-

gies. KR is always initiated by these assembly and operation relations. For instance, boom’s lift-
ing capacity is a typical attribute associated with domain problem ontology of Boom. It is often 
calculated based on the parameters of outrigger’s extension span, weight of the counterbalance, 
and power parameters of the power system (e.g., rated power, rated torque), etc. These parame-
ters are derived from the attributes of domain problem ontology of Outrigger, Turning Platform, 
and Power System. It typically indicates a knowledge-dependency relation between Boom and 
{Outrigger, Turning Platform, Power System}. 

(4) How to specify Tasks T? 
Typically, we take Tasks TBoom initiated by Boom as an example. Here, let Boom.ABoom = 

{Trunk, Oviform profile, 4-Sections, 2-Section folding jib, Synchronous-Extension, 50t}. TBoom’s 
enactment is often promoted by assigning its task items to suitable teams or person for fulfilling 
these attributes. Here, the collaboration among task executions is navigated by the attributes’ as-
sociation specified by KR. 

(5) How to discover valid Methods M? 
In [9][11][34], some strategies are presented for method discovery related to knowledge mod-

eling. Here, task-oriented method discovery is often promoted by decision-making based on past 
experiences or by knowledge exploring from existing repository [1][5][29]. As attribute-driven 
task executions, method discoveries are also initiated by Attributes A. In our case study, it is rei-
fied into function mapping or attribute mapping. For example, Boom could be used as an index 
for absorbing similar functional unit from existing product spectrums. Moreover, an attribute de-
rived from {Trunk, Oviform profile, 4-Sections, 2-Section folding jib, Synchronous-Extension, 50t} 
could also be used as an index for method discovery. Through function and attribute mapping, 
related implementation knowledge such as design methods and manufacturing techniques could 
be recruited for facilitating expected boom’s design and manufacturing.  

 (6) How to specify Temporal-dependecy Relations TR based on Knoweldge-dependecy Rela-
tions KR?  

Temporal knowledge modeling around TR is one of the key topics. It will be investigated in 
Section 4. 

Temporal	Knowledge	Modeling	around	TR	inside	POTME	Framework	
1.Context Mapping from KR to TR 

In Definition1, KR indicates a context related to problem definition, and TR specifies a context 
related to task execution. They are two different domain-specific contexts. However, as TRi-j is 
initiated by KRi-j specification in application logic in its definition, context mapping between KR 
and TR is firstly discussed for promoting their coordination. 

Definition2. Let Ai-j={ai-xai-xAiaj-xAj: (ai-x aj-x)KRi-j}. In this situation, knowledge co-
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ordination between Ti and Tj is initiated by ti-x(ai-x)’s executions, in which ai-xAi-j and Ai-j Ai 
are held.  

In Definition2, ti-x(ai-x) plays as a knowledge producer for Tj’s executions, and Tj plays as a 
learner (i.e., knowledge consumer) in Ti and Tj’s cross-domain collaboration. They share the 
knowledge assets produced by Ai-j-around task executions. Therefore, cross-domain knowledge 
coordination among task executions is defined as below. 

Definition3. For Ti and Tj, their knowledge coordination process (KCi-j) could be formalized 
into KCi-j = {(ti-x(ai-x), tj-x(aj-x))|ai-xAi-j, aj-xAj: (ai-x, aj-x)KRi-j}. 

In application logic, KCi-j is essentially promoted by knowledge dependency KRi-j specified 
between Ti and Tj. On the other hand, its concrete execution is navigated by certain temporal-
dependency specification. Therefore, it integrates KRi-j‘s context and TRi-j‘s context into an in-
corporated application environment. 

Definition4. For ti-x(ai-x) and tj-x(aj-x), to highlight their producer-consumer relation initiated by 
ai-x, ti-x(ai-x) stands for a knowledge producing process, and tj-x(

~ai-x) stands for a knowledge con-
suming process engaged in tj-x(aj-x)’s execution, in which ti-x(ai-x)Ti, tj-x(aj-x)Tj, and (ti-x(ai-x), tj-

x(aj-x))KCi-j. Here, ai-x would be treated as a process parameter for promoting ti-x(ai-x) and tj-x(aj-

x)’s knowledge coordination. 
In this paper, if there is just one element contained in Ai-j, we believe that there is a single 

learning path for cross-domain knowledge coordination between Ti and Tj. If there is more than 
one element contained in Ai-j, we believe that there is a multi-learning path engaged in their 
cross-domain knowledge coordination between Ti and Tj. Here, a knowledge coordinating pro-
cess between Ti and Tj is essentially a cross-domain workflow execution process that spans KRi-

j‘s context and TRi-j‘s context in a compatible way, in which knowledge producing process and 
knowledge consuming process as defined by Definition4 are knowledge-intensive workflow 
fragments for fulfilling certain attributes. 

 In this situation, workflow patterns as defined in [46] could be improved for demonstrating 
KCi-j‘s applications. These improved workflow patterns would be named knowledge coordination 
patterns in this paper for highlighting their knowledge-intensive features. Table1 specifies some 
typical knowledge coordination patterns between two task executions. Please note that the 
knowledge coordination patterns as listed in Table1 could be extended to specify knowledge co-
ordination among three or more task domains. For example, AND-Split(ti-x(ai-x); tj-x(aj-x), tk-x(ak-x)) 
specifies a knowledge coordination situation among three task executions of ti-x, tj-x, and tk-x(ak-x) 
that are respectively derived from three task domains of Ti, Tj and Tk, in which (ti-x(ai-x), tj-x(aj-

x))KCi-j and (ti-x(ai-x), tk-x(ak-x))KCi-k are held.   
  As indicated by the author [46], the scope of workflow patterns is limited to static control 

flow with no explicit parameter. Compared with the workflow pattern definitions as presented in 
[46], the knowledge coordination patterns as listed in Table1 are explicitly promoted by process 
parameters of domain-specific attributes. They focus on dynamic knowledge coordination with 
certain control policy. The control policy will be reified into temporal disciplines that will be in-
vestigated in the following sections.  
2.Temporal-Dependency Analysis among Task Executions 

In practice, knowledge coordination is not only a task-driven process, but also a time-consuming 
process. Generally, temporal knowledge is demanded in a wide range of disciplines, especially 
for scheduling application [22][24][44]. In [22], some typical temporal relations are presented for 
specifying temporal dependencies among intervals. As indicated in [23], the temporal logics 
found in [22] are merely exploited in representing qualitative temporal information. However, in 
a wide range of application areas, a quantitative temporal analysis is required, especially for 
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specifying a task execution [24]. Here, some typical time parameters related to quantitative tem-
poral specification are defined as follows. Please note that the time parameters presented in this 
paper are relative time rather than absolute time. 

TABLE1 
TYPICAL KNOWLEDGE COORDINATION PATTERNS BETWEEN TWO TASK EXECUTIONS 

Pattern Style Specification 
Sequence For ti-x(ai-x) and tj-x(aj-x), (ti-x(ai-x), tj-x(aj-x))KCi-j, if tj-x(

~ai-x) occurs only after ti-x(ai-x)’s execution is completed, the knowledge coordina-
tion pattern between ti-x(ai-x) and tj-x(aj-x) would be formalized into Sequence(ti-x(ai-x), tj-x(aj-x)). 

Parallel For ti-x(ai-x) and tj-x(aj-x), (ti-x(ai-x), tj-x(aj-x))KCi-j, if tj-x(
~ai-x) occurs during ti-x(ai-x)’s execution, the knowledge coordination pattern be-

tween ti-x(ai-x) and tj-x(aj-x) would be formalized into Parallel (ti-x(ai-x), tj-x(aj-x)). 

AND-Split For ti-x(ai-x), tj-x(aj-x) and tj-x’(aj-x’), ti-x(ai-x)Ti, tj-x(aj-x)Tj, tj-x’(aj-x’)Tj, tj-x(aj-x)tj-x’(aj-x’), and aj-xaj-x’. If (ti-x(ai-x), tj-x(aj-x))KCi-j and (ti-x(ai-

x), tj-x’(aj-x’))KCi-j are held, that is, both tj-x(aj-x) and tj-x’(aj-x’) are enabled or advanced by ti-x(ai-x)’s execution, the knowledge coordination 
pattern among ti-x(ai-x), tj-x(aj-x) and tj-x’(aj-x’) would be formalized into AND-Split(ti-x(ai-x); tj-x(aj-x), tj-x’(aj-x’)). 

 
XOR-Split 

For ti-x(ai-x), tj-x(aj-x) and tj-x’(aj-x’), ti-x(ai-x)Ti, tj-x(aj-x)Tj, tj-x’(aj-x’)Tj tj-x(aj-x)tj-x’(aj-x’), and aj-xaj-x’. If (ti-x(ai-x), tj-x(aj-x))KCi-j or (ti-x(ai-x), 
tj-x’(aj-x’))KCi-j is held, that is, ti-x(ai-x) is followed by either tj-x(aj-x) or tj-x’(ak-x’), the knowledge coordination pattern among ti-x(ai-x), tj-x(aj-

x) and tj-x’(aj-x’) would be formalized by XOR-Split(ti-x(ai-x); tj-x(aj-x), tj-x’(aj-x’)). 

 
AND-Join 

For ti-x(ai-x), ti-x’(ai-x’) and tj-x(aj-x), ti-x(ai-x)Ti, ti-x’(ai-x’)Ti, tj-x(aj-x)Tj, ti-x(ai-x)ti-x’(ai-x’), and ai-xai-x’. If (ti-x(ai-x), tj-x(aj-x))KCi-j and (ti-x’(ai-

x’), tj-x(aj-x))KCi-j are held, that is, tj-x(aj-x) is enabled after the completion of both ti-x(ai-x) and ti-x’(ai-x’), the knowledge coordination pat-
tern ti-x(ai-x), ti-x’(ai-x’) and tj-x(aj-x) would be formalized by AND-Join(ti-x(ai-x), ti-x’(ai-x’); tj-x(aj-x)). 

 
XOR-Join 

For ti-x(ai-x), ti-x’(ai-x’) and tj-x(aj-x), ti-x(ai-x)Ti, ti-x’(ai-x’)Ti, tj-x(aj-x)Tj, ti-x(ai-x)ti-x’(ai-x’), and ai-xai-x’. If (ti-x(ai-x), tj-x(aj-x))KCi-j or (ti-x’(ai-

x’), tj-x(aj-x))KCi-j are held, that is, tj-x(aj-x) is enabled after either ti-x(ai-x) or ti-x’(ai-x’) is executed, the knowledge coordination pattern ti-x(ai-

x), ti-x’(ai-x’) and tj-x(aj-x) would be formalized by XOR-Join(ti-x(ai-x), ti-x’(ai-x’); tj-x(aj-x)). 

 
Definition5. Ti’s expected executable duration could be scheduled by a time period [TStart(Ti), 
TEnd(Ti)], where TStart(Ti) stands for Ti’s expected start time, TEnd(Ti) stands for Ti’s expected end 
time, and TStart(Ti) TEnd(Ti) is held. 
Definition6. ti-x(ai-x)’s expected executable duration could be scheduled by a time period [TStart(ti-

x(ai-x)), TEnd(ti-x(ai-x))], where TStart(ti-x(ai-x)) stands for ti-x(ai-x)’s expected start time, TEnd(ti-x(ai-x)) 
stands for ti-x(ai-x)’s expected end time, and TStart(ti-x(ai-x))TEnd(ti-x(ai-x)) is held. 
Obviously, [TStart(ti-x(ai-x)), TEnd(ti-x(ai-x))][TStart(Ti), TEnd(Ti)] is held.  
Definition7. If there is a knowledge coordination KCi-j between Ti and Tj, tj-x(

~ai-x)’s executable 
duration could be scheduled by a time period [TStart(tj-x(

~ai-x)), TEnd(tj-x(
~ai-x))], where, TStart(tj-x(

~ai-

x))  TEnd(tj-x(
~ai-x)) is held. 

In application logic, knowledge producing process (i.e., problem solving activities) is always 
promoted by certain knowledge consuming process (knowledge referring activities). Therefore, a 
knowledge producing process covers its knowledge consuming process in executive interval, i.e., 
[TStart(tj-x(

~ai-x)), TEnd(tj-x(
~ai-x))][TStart(tj-x(aj-x)), TEnd(tj-x(aj-x))]. However, in practice, it is diffi-

cult to exactly specify [TStart(tj-x(
~ai-x)), TEnd(tj-x(

~ai-x))] during tj-x‘s execution in interval specifica-
tion, especially in knowledge-based scheduling application. Therefore, in this paper, we suppose 
that tj-x(

~ai-x) equals to tj-x(aj-x), especially in executive time cost (i.e., [TStart(tj-x(aj-x)), TEnd(tj-x(aj-

x))] = [TStart(tj-x(
~ai-x)), TEnd(tj-x(

~ai-x))]). It indicates that tj-x(aj-x) and tj-x(
~ai-x) are executed in a 

concurrent way. 
 
 
 
 

 
Fig.2 Typical time parameters for specifying Ti and Tj with cross-domain knowledge  

coordination initiated by ai-x. 
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Fig.2 illustrates the typical time parameters as defined in Definition5, Definition6, and Defini-
tion7. 

With these hypotheses, Temporal-dependecy Relations TR presented in Definition1 could be 
further specified by Definition 8. 

Definition8. If there is a knowledge coordination KCi-j between Ti and Tj, temporal-dependecy 
relation TRi-j between Ti and Tj could formalized into TSE(ti-x(ai-x))R

TTSE(tj-x(
~ai-x)), in which 

TSE(ti-x(ai-x)){TStart(ti-x(ai-x)), TEnd(ti-x(ai-x))}, TSE(tj-x(
~ai-x)){TStart(tj-x(

~ai-x)), TEnd(tj-x(
~ai-x))}, and 

(ti-x(ai-x), tj-x(aj-x))KCi-j; besides, RT
 stands for a logic relation between TSE(ti-x(ai-x)) and TSE(tj-

x(
~ai-x)), i.e., RT{, =, }. 
With these definitions presented in this section, the temporal relations as defined in [22] could 

be extended with explicit process parameters for modeling knowledge coordination from tem-
poral-dependency aspect. Table2 illustrates some typical temporal-dependency relations, which 
enables qualitative knowledge coordination into quantitative cross-domain task executions. 
3.A FollowMe Temporal Reasoning Rule Promoted by Temporal-dependecy Relations TR 

For a task execution, if it has no temporal-dependency relation with other task executions, it 
would be scheduled in a self-governing way based on certain expectation and past experiences 
[24]. For two task executions that have certain knowledge coordination in their collaboration, 
their scheduling application should take into consideration of the knowledge coordination pat-
terns as listed in Table1 and the temporal-dependency relations as listed in Table2. In view of 
this demand, a temporal reasoning rule, named FollowMe, will be investigated in this section for 
scheduling cross-domain knowledge coordination based on their temporal-dependency relation. 

For two task executions of ti-x(ai-x) and tj-x(aj-x), suppose that there is a knowledge coordination 
process for their collaboration. Here, their knowledge coordination is initiated by ai-x. For Ti, as 
[TStart(ti-x(ai-x)), TEnd(ti-x(ai-x))][TStart(Ti), TEnd(Ti)] is held in Ti’s internal temporal distribution, 
time period [TStart(Ti), TEnd(Ti)] covers time period [TStart(ti-x(ai-x)), TEnd(ti-x(ai-x))]. In this situation, 
TStart(Ti) and TEnd(Ti) should be always determined firstly in its scheduling application. Thereafter, 
TStart(ti-x(ai-x)) and TEnd(ti-x(ai-x)) are determined according to Ti’s internal temporal distribution.  

Therefore, Ti’s scheduling process associated with ti-x(ai-x)’s execution is promoted along a 
global-to-local scheduling path, i.e., [TStart(Ti), TEnd(Ti)] [TStart(ti-x(ai-x)), TEnd(ti-x(ai-x))]. For Tj, 
although time period [TStart(Tj), TEnd(Tj)] covers time period [TStart(tj-x(

~ai-x)), TEnd(tj-x(
~ai-x))] in 

Tj’s internal temporal distribution, Tj‘s has a different temporal scheduling path associated with 

TABLE2  
TYPICAL TEMPORAL-DEPENDENCY RELATIONS BETWEEN TWO TASK EXECUTIONS 

Style Specification 

 
Before 

If TEnd(ti-x(ai-x))<TStart(tj-x(
~ai-x)), the temporal-dependency relation between ti-x and tj-x would be defined as a Before style, It would be formalized into 

Before(ti-x(ai-x), tj-x(
~ai-x); Ti-j) in this paper, where Ti-j stands for a time period from TEnd(ti-x(ai-x)) to TStart(tj-x(

~ai-x)), i.e., Ti-j = TStart(tj-x(
~ai-x)) –TEnd(ti-x(ai-

x)). 

Meet 
If TEnd(ti-x(ai-x))=TStart(tj-x(

~ai-x)), the temporal-dependency relation between ti-x and tj-x would be defined as a Meet style. It would be formalized into 
Meet(ti-x(ai-x), tj-x(

~ai-x)) in this paper. 

Overlap 
If (TStart(tj-x(

~ai-x))<TEnd(ti-x(ai-x)))(TStart(ti-x(ai-x))<TStart(tj-x(
~ai-x))), the temporal-dependency relation between ti-x and tj-x would be defined as an Overlap 

style. It would be formalized into Overlap((ti-x(ai-x), tj-x(
~ai-x); Ti-j)) in this paper, where Ti-j stands for a time period from TStart(tj-x(

~ai-x)) to TEnd(ti-x(ai-x)), 
i.e., Ti-j= TEnd(ti-x(ai-x)) –TStart(tj-x(

~ai-x)). 

Start 
If TStart(ti-x(ai-x))=TStart(tj-x(

~ai-x)), the temporal-dependency relation between ti-x and tj-x would be defined as a Start style. It would be formalized into 
Start(ti-x(ai-x), tj-x(

~ai-x)) in this paper. 

During 
If (TStart(ti-x(ai-x))<TStart(tj-x(

~ai-x))(TEnd(ti-x(ai-x))>TEnd(tj-x(
~ai-x)), the temporal-dependency relation between ti-x and tj-x would be defined as a During style. 

It would be formalized into During(ti-x(ai-x), tj-x(
~ai-x)) in this paper. 

Finish 
If TEnd(ti-x(ai-x))=TEnd(tj-x(

~ai-x)), the temporal-dependency relation between ti-x and tj-x would be defined as a Finish style. It would be formalized into 
Finish(ti-x(ai-x), tj-x(

~ai-x)) in this paper. 

Equal 
If (TStart(ti-x(ai-x))=TStart(tj-x(

~ai-x)))(TEnd(ti-x(ai-x))=TEnd(tj-x(
~ai-x))), the temporal-dependency relation between ti-x and tj-x would be defined as a Equal 

style. It would be formalized into Equal(ti-x(ai-x), tj-x(
~ai-x)) in this paper. 
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tj-x(
~ai-x)’s execution. More specifically, as TStart(tj-x(

~ai-x)) and  TEnd(tj-x(
~ai-x)) is always triggered 

by TStart(ti-x(ai-x)) and TEnd(ti-x(ai-x)), navigated by this temporal-dependency relation, [TStart(ti-x(ai-

x)), TEnd(ti-x(ai-x))] [TStart(tj-x(~ai-x)), TEnd(tj-x(~ai-x))]/[TStart(tj-x(aj-x)), TEnd(tj-x(aj-x))] is always 
put into effect in scheduling tj-x(aj-x)‘s execution. In this situation, for Tj’s scheduling appli-
cation, it is initiated by [TStart(tj-x(

~ai-x)), TEnd(tj-x(
~ai-x))]/[TStart(tj-x(aj-x)), TEnd(tj-x(aj-x))]. Only after 

TStart(tj-x(aj-x)) and TEnd(tj-x(aj-x)) are determined, [TStart(Tj), TEnd(Tj)] could be deduced according 
to Tj’s internal temporal distribution. Therefore, Tj’s scheduling process is promoted along a lo-
cal-to-global scheduling logic, i.e., [TStart(tj-x(

~ai-x)), TEnd(tj-x(
~ai-x))] [TStart(Tj), TEnd(Tj)]. It is 

different from Ti’s scheduling process in application, as it is navigated by certain temporal-
dependency constraints derived from Ti.  

According to these analyses, a temporal reasoning rule is defined as follows, for evaluating 
cross-domain knowledge coordination between two task domains. 

Definition9. For two task executions of ti-x(ai-x) and tj-x(aj-x), their knowledge coordination ini-
tiated by ai-x could be scheduled along the following path: [TStart(Ti), TEnd(Ti)] [TStart(ti-x(ai-x)), 
TEnd(ti-x(ai-x))]  [TStart(tj-x(

~ai-x)), TEnd(tj-x(
~ai-x))]/[TStart(tj-x(aj-x)), TEnd(tj-x(aj-x))]  [TStart(Tj), 

TEnd(Tj)]. 
In this paper, the cross-domain scheduling logic as defined by Definition9 would be named as 

FollowMe temporal reasoning rule. Furthermore, the deduced unique temporal state of Tj would 
be treated as a runtime temporal state associated with a process parameter ai-x. It would be indi-
cated by Tj(

~ai-x) in this paper for highlighting cross-domain knowledge coordination between Ti 
and Tj. Once Tj‘s runtime temporal state Tj(

~ai-x) is determined, the global time cost of Ti and Tj‘s 
executions could be calculated out in an incorporated executive environment. It is helpful for 
evaluating Ti and Tj‘s collaboration in time cost, which is a key demands in scheduling applica-
tion. 

Definition10. Let TStart(Tj(
~ai-x)) and TEnd(Tj(

~ai-x)) respectively stand for Tj(
~ai-x)’s start time 

and its end time. Let TStart = min{TStart(Ti), TStart(Tj(
~ai-x))}, TEnd=max{TEnd(Ti), TEnd(Tj(

~ai-x))}, 
the global time cost of Ti and Tj‘s executions, i.e., TTC(i-j)(ai-x), could be calculated in an incorpo-
rated executive environment, i.e., TTC(i-j)(ai-x)=TEnd  TStart. 

Here, there is just one process parameter between Ti and Tj in their cross-domain collaboration. 
If there are n process parameters between Ti and Tj in their collaboration, Tj would have n 
runtime temporal states. Each runtime temporal state is associated with a unique process parame-
ter. For Tj‘s n runtime temporal states, taking advantage FollowMe temporal reasoning rule and 
Definition10, we could also deduce out the global time cost of Ti and Tj‘s executions. The more 
complex application situations would be investigated in the following section. 
4.FollowMe Temporal Reasoning Rule’s Application Analyses 

In this section, for better understating our discussion, we will use some typical examples to 
demonstrate FollowMe temporal reasoning rule’s applications. These examples could be general-
ized for similar applications, which benefit complex situations in further applications.  
Case1: Temporal reasoning between two task domains initiated by one process parameter  

Typically, we will firstly consider two task domains of Ti and Tj. Suppose that Ti‘s expected 
executable duration is 10 time units, and Tj‘s duration is 9 time units. Taking no temporal-
dependency relation into consideration, Ti and Tj are independently illustrated by Fig.3 and Fig.4. 
During Ti‘s execution as illustrated in Fig.3, there is a ti-x(ai-x). ti-x(ai-x)’s expected start time is at 
3 time point and its expected end time is at 8 time point, i.e., TStart(ti-x(ai-x)) = 3, and TEnd(ti-x(ai-x)) 
= 8. During Tj‘s execution as illustrated in Fig.4, there is a tj-x(aj-x). tj-x(aj-x)’s expected start time 
is at 3 time point and its expected end time is at 7 time point, i.e., TStart(tj-x(aj-x)) = 3, and TEnd(tj-

x(aj-x)) = 7. Here, Fig.3 and Fig.4 indicate two isolated executive environments respectively indi-
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cated by two different time axes of t’ and t’’. Here, we use TIsolated(Ti) and TIsolated(Tj) to respec-
tively indicate the executable durations of Ti and Tj in their isolated executive environments, i.e., 
TIsolated(Ti) = 10 time units and TIsolated(Tj)= 9 time units.  
 

 
 
 

 
Fig.3 Ti’s temporal parameters and their distributions associated with ai-x specified in its isolated 

executive environment (i.e., time axis t’) 
 
 
 
 

 
 
 

Fig.4 Tj’s temporal parameters and their distributions associated with aj-x specified in its isolated 
executive environment (i.e., t’’) 

In practice, taking into no temporal-dependency relation into consideration, a task domain is 
often scheduling in a self-governing way as demonstrated by Fig.3 and Fig.4. Now, a Before 
style temporal-dependency relation is brought into Ti and Tj‘s collaboration for their cross-
domain knowledge coordination initiated by ai-x. More specifically, Before(ti-x(ai-x), tj-x(

~ai-x); Ti-j) 
is held between ti-x(ai-x) and tj-x(aj-x), in which Ti-j=1 time unit is held. With these temporal con-
straints, Ti and Tj‘s temporal parameters should be re-specified in an incorporated executive en-
vironment for orchestrating cross-domain knowledge coordination between ti-x(ai-x) and tj-x(

~ai-x). 
For brevity and without the loss of generality, time axis t′ is recruited as a united time axis t for 
indicating their incorporated executive environment. 

Facilitating our discussion, some duration parameters associated with Tj are specified as below.  
(1)Let Tj-d1 indicate the duration from TStart(Tj) to TStart(tj-x(aj-x)), i.e., Tj-d1= 3 time units as illus-

trated in Fig.4; 
(2)Let Tj-d2 indicate the duration from TStart(tj-x(aj-x)) to  TEnd(tj-x(aj-x)), i.e., Tj-d2= 4 time units as 

illustrated in Fig.4;  
(3)Let Tj-d3 indicate the duration from TEnd(tj-x(aj-x)) to TEnd(Tj), i.e., Tj-d3= 2 time units as illus-

trated in Fig.4. 
Taking advantage of these parameters and FollowMe temporal reasoning rule, Tj‘s time param-

eters are re-specified, as below, in an incorporated executive environment indicated by an united 
time axis t. 

(1) TStart(tj-x(
~ai-x))=TEnd(ti-x(ai-x)) + Ti-j = 8 +1 = 9. 

(2) TEnd(tj-x(
~ai-x))= TStart(tj-x(

~ai-x)) + Tj-d2 = 9 + 4 = 13. 
(3) TStart(Tj(

~ai-x))=TStart(tj-x(
~ai-x)) Tj-d1 = 9  3 = 6. 

(4) TEnd(Tj(
~ai-x)) = TStart(Tj(

~ai-x)) + Tj-d1 +Tj-d2 +Tj-d3=6 + 3 +4 + 2 = 15. 
(5) TTC(i-j)(ai-x) = TEnd(Tj(

~ai-x))  TStart(Ti) = 15  0 = 15.  

Fig.5 illustrates an incorporated executive environment, in which Tj‘s runtime temporal state is 
associated with a group of re-specified temporal parameters. Please note that the re-specified 

Ti 
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temporal parameters associated with Tj‘s runtime temporal state have the same distributions as 
they are specified in Tj‘s insolated executive environment (See Fig.4). 
 
 
 
 
 
 
 
Fig.5 Tj’s re-specified temporal parameters and their distributions in Ti and Tj’s incorporated ex-

ecutive environment (i.e., t ).. 

In Fig.5, the start time of Tj‘s runtime temporal state is at the 6 time point as indicated by time 
axis t (i.e., TStart(Tj(

~ai-x)) =6). In practice, it is an ideal start time to meet Before(ti-x(ai-x), tj-x(
~ai-x); 

Ti-j) temporal-dependency relation. Otherwise, some additional time cost would be occupied or 
temporal-dependency relation Before(ti-x(ai-x), tj-x(

~ai-x); Ti-j) would be spoiled. More specifically, 
suppose Tj starts its execution at the 5 time point, i.e., Tj(

~ai-x))=5. According to the Before style 
temporal-dependency relation, tj-x(

~ai-x) just could start it execution at the 9 time point i.e., 
TStart(tj-x(

~ai-x)) = 9. With this hypothesis, we could deduce that the executable duration from 
TStart(Tj(

~ai-x)) to TStart(tj-x(
~ai-x)) is 4 time units, i.e., Tj-d1= 4. Obviously, it extends Tj-d1’s original 

value (i.e., Tj-d1=3) scheduled in advance. On the other hand, suppose Tj starts its execution at the 
7 time point, i.e., Tj(

~ai-x))=7. As the internal temporal distribution is fixed as we scheduled in 
advance (See Fig.4), the duration from TStart(Tj(

~ai-x))to TStart(tj-x(
~ai-x)) is a fixed value. In this 

situation, we could deduce that the duration from TEnd(ti-x(ai-x)) to TStart(tj-x(
~ai-x)) is 2 time units. 

As this duration is associated with the parameters of Ti-j as specified in Before(ti-x(ai-x), tj-x(
~ai-x); 

Ti-j), i.e., Ti-j=2 time units. Obviously, it spoils Ti-j’s original value (i.e., Ti-j=1). Therefore, Fol-
lowMe temporal reasoning rule provide an efficient approach to accurately determine Tj‘s active 
interval for satisfy cross-domain collaboration with Ti. 

Case2: Temporal reasoning between two task domains initiated by n process parameters  
Suppose that there is a multi-learning path between Ti and Tj, that is, there are n (n>1) process 

parameters engaged in Ti and Tj‘s cross-domain collaboration. For brevity and without the loss of 
generality, let ai-1, ai-2, …, ai-n respectively stands for the n  process parameters, i.e., Ai-j= {ai-1, ai-

2, …, ai-n}. Besides, suppose there is an unique temporal-dependency relation for ti-x(ai-x) and tj-

x(
~ai-x)’s knowledge coordination process initiated by ai-x (ai-x{ai-1, ai-2, …, ai-n}). With these 

hypotheses, as we discussed in Case1, a runtime temporal state Tj(
~ai-x) could be deduced associ-

ated with each temporal-dependency relation. Therefore, initiated by the n process parameters, 
there would be n runtime temporal states associated with Tj’s execution, i.e., Tj(

~ai-1), Tj(
~ai-2),…, 

Tj(
~ai-n). For Tj(

~ai-x){Tj(
~ai-1), Tj(

~ai-2),…, Tj(
~ai-n)}, it has a start time value (i.e.,TStart(Tj(

~ai-x))) 
and a end time value (i.e.,TEnd(Tj(

~ai-x))). Associated with Tj‘s n runtime temporal states, there are 
n start time values and n end time values. In this paper, the minimal value of the n start time val-
ues, i.e., min{TStart(Tj(

~ai-1)), TStart(Tj(
~ai-2)), …, TStart(Tj(

~ai-n))}, indicates Tj‘s earliest start time 
to satisfy Ti and Tj‘s cross-domain collaboration. In this paper, it is indicated by TStart-

Earliest(Tj(KCi-j)), i.e., TStart-Earliest(Tj(KCi-j)) = min{TStart(Tj(
~ai-1)), TStart(Tj(

~ai-2)), …, TStart(Tj(
~ai-

n))}. Similarly, the maximal value of the n end time values, i.e., max{TEnd(Tj(
~ai-1)), TEnd(Tj(

~ai-

2)), …, TEnd(Tj(
~ai-n))}, indicates Tj‘s latest end time to satisfy the collaboration between Ti and Tj. 

In this paper, it is indicated by TEnd-Latest(Tj(KCi-j)), i.e., TEnd-Latest(Tj(KCi-j)) = max{TEnd(Tj(
~ai-1)), 

Ti 

Tj(~ai-x) 
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TEnd(Tj(
~ai-2)), …, TEnd(Tj(

~ai-n))}.  
In this paper, we use TCollaboration(Tj(KCi-j)) to indicate the duration from TStart-Earliest(Tj(KCi-j)) to 

TEnd-Latest(Tj(KCi-j)). It specifies Tj‘s active interval to collaborate with Ti initiated by n process 
parameters ai-1, ai-2, …, ai-n in a trade-off way. Generally, TCollaboration(Tj(KCi-j)) is longer than Tj‘s 
expected executable durations in an isolated executive environments as illustrated in Fig.4, i.e., 
TCollaboration(Tj(

~ai-x))  TIsolated(Tj).  
Once TStart-Earliest(Tj(KCi-j)) and TEnd-Latest(Tj(KCi-j)) is deduced out, taking advantage of Defini-

tion10, global time cost of Ti and Tj‘s executions (i.e., TTC(i-j)(KCi-j)), could be calculated. Here, 
we typically suppose that there are just two process parameters of ai-1 and ai-2 engaged in Ti and 
Tj‘s cross-domain collaboration. Moreover, to simplify our discussion, for ai-1, Ti and Tj have the 
same specifications as presented in Case1‘s analysis. More specifically, for ai-1, as illustrated by 
Fig.3 and Fig.4, let ti-x(ai-x) = ti-1(ai-1) and tj-x(aj-x) = tj-1(aj-1). Besides, there is a Before style tem-
poral-dependency relation for cross-domain knowledge coordination between ti-1(ai-1) and tj-1(aj-

1). Before(ti-1(ai-1), tj-1(
~ai-1); Ti-j) has the same specification as illustrated in Fig.5, i.e., Ti-j = 1 

time unit. For ai-2, Ti and Tj’s specifications are illustrated by Fig.6 and Fig.7, in which TStart(ti-

2(ai-2))=1, TEnd(ti-2(ai-2))=3, TStart(tj-2(aj-2))=1, and TEnd(tj-2(aj-2))= 5. Initiated by ai-2, there is a 
Meet style temporal-dependency relation for cross-domain knowledge coordination between ti-

2(ai-2) and tj-2(aj-2), that is, a Meet(ti-2(ai-2), tj-2(
~ai-2)) style temporal-dependency relation is held 

between ti-2(ai-2) and tj-2(aj-2)’s collaboration. Fig.8 illustrates the multi-knowledge coordination 
processes initiated by ai-1 and ai-2 for Ti and Tj‘s cross-domain collaboration. 

 
 
 
 

 
 

 
Fig.6 Ti’s temporal parameters and their distributions associated with ai-2 specified in its isolated 

executive environment (i.e., t’ ) 

 
 
 
 
 

Fig.7 Tj’s temporal parameters and their distributions associated with aj-2 specified in its isolated 
executive environment (i.e., t’’ ) 

 
 
 

 
 
 
 

Fig.8 Temporal distributions in Ti and Tj’s cross-domain collaboration initiated by two process 
parameters of ai-1 and ai-2 in an incorporated executive environment (i.e., t ). 
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In Fig.8, for Tj(
~ai-1), its expected start time and end time have been deduced as  demonstrated 

in Case1‘s analysis, i.e., TStart(Tj(
~ai-1))= 6 time units and TEnd(Tj(

~ai-1)) = 15 time units as illus-
trated by Fig.5; for Tj(

~ai-2), its runtime state could be also deduced according to FollowMe tem-
poral reasoning rule as we demonstrated in Case1‘s analysis. As a result, Tj(

~ai-2)’s expected start 
time is at the 2 time point and its expected end time is at the 11 time point, i.e., TStart(Tj(

~ai-2))= 2 
time units and TEnd(Tj(

~ai-2)) = 11 time units in an incorporated executive environment. Therefore, 
we could deduced that TStart-Earliest(Tj(KCi-j)) = min{TStart(Tj(

~ai-1)), TStart(Tj(
~ai-2))} = 2 and TEnd-

Latest(Tj(KCi-j))= max{TEnd(Tj(
~ai-1)), TEnd(Tj(

~ai-2))} = 15 are held. Furthermore, we also could 
deduced that TCollaboration(Tj(KCi-j)) is 13 time units, i.e., TCollaboration(Tj(KCi-j)) = TEnd-Latest(Tj(KCi-j)) 
TStart-Earliest(Tj(KCi-j)) = 15  2 = 13 time units. As TIsolated(Tj) = 9 time units as specified in Fig.4, 
TCollaboration(Tj(KCi-j))>TIsolated(Tj) is obviously held. At last, the global time cost of Ti and Tj‘s ex-
ecutions initiated by ai-1 and ai-2 (i.e., TTC(i-j)(KCi-j)) could be calculated according to Definition10, 
i.e., TTC(i-j)(KCi-j) = TEnd-Latest(Tj(KCi-j))  TStart(Ti) = 15 time units.  

Here, please note that two typical situations should be taken into consideration: 1) tj-x(aj-x) is 
promoted by a number of task executions contained in Ti‘s execution domain, and 2) ti-x(ai-x) 
serves a number of task executions contained in Tj‘s execution domain. The first situation is 
promoted with an AND-Join() style of knowledge coordination, and the second situation is pro-
moted with an AND-Split() style of knowledge coordination between Ti and Tj. In our example 
as demonstrated by Fig.8, the first situation equals to an AND-Join(ti-1(ai-1), ti-2(ai-2); tj-1(aj-1)) 
style of knowledge coordination with a hypothesis that tj-1(aj-1) = tj-2(aj-2) is held; the second situ-
ation equals to an AND-Split(ti-1(ai-1); tj-1(aj-1), tj-2(aj-2)) style of knowledge coordination with a 
hypothesis that ti-1(ai-1) = ti-2(ai-2) is held. For these two application situations, Tj‘s runtime tem-
poral states could also be deduced according to FollowMe temporal reasoning rule. Here, limited 
by the length of the paper, we don’t demonstrate these application situations in detail. Interested 
readers could calculate Ti‘s temporal parameters by themselves for verifying our method. 

Case3: Temporal reasoning among three task domains 
Here, we will consider a more complex situation of cross-domain collaboration among three 

task domain Ti, Tj and Tk that collaborate in a sequential way. Fig.9 illustrates four typical 
knowledge transferring path from Ti to Tk through Tj, i.e., 1:1 knowledge transferring style, 1:n 
knowledge transferring style, n:1 knowledge transferring style, and n1:n2 knowledge transferring 
style. Here, n, n1 and n2 respectively indicate that there are n, n1 and n2 process parameters en-
gaged in cross-domain knowledge coordination between two task domains. 

1) Temporal reasoning of 1:1 knowledge transferring style 
For a single learning path between Ti and Tj, there is just one process parameter ai-x engaged in 

Ti and Tj’s knowledge coordination, which is associated with a unique temporal-dependency re-
lation. Corresponding to Ti and Tj’s temporal-dependency relation, Tj’s runtime temporal state 
could be deduced for orchestrating Ti and Tj’s collaboration in an incorporated executive envi-
ronment. It has been demonstrated in Case1‘s analysis. Similarly, as there is also one process pa-
rameter aj-y engaged in Tj and Tk’s cross-domain knowledge coordination, Tk’s runtime temporal 
state could also be deduced according to Tj’s runtime temporal state in Ti and Tj‘s incorporated 
executive environment. Once the temporal distributions among Ti, Tj and Tk are deduced out, the 
global time cost of Ti, Tj and Tk‘s executions could be calculated to evaluate their cross-domain 
collaboration in time cost. More specifically, let TStart=min{TStart(Ti), TStart(Tj(

~ai-x)), TStart(Tk(
~aj-

y))}, TEnd=max{TEnd(Ti), TEnd(Tj(
~ai-x)), TEnd(Tk(

~aj-y))}, the global time cost of Ti, Tj and Tk‘s ex-
ecutions, i.e., TTC(i-j-k)(ai-x/aj-y), could be calculated according to Definition10, i.e., TTC(i-j-k)( ai-x/aj-

y)=TEnd  TStart, in Ti, Tj and Tk‘s incorporated executive environment. 
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2) Temporal reasoning of 1:n knowledge transferring style 
Here, there is just one process parameter ai-x engaged in Ti and Tj’s knowledge coordination. 

According to the temporal-dependency relation imposed on ti-x(ai-x) and  tj-x(
~ai-x),  Tj‘s runtime 

temporal state could be deduced, as we demonstrated in Case1’s analysis, in Ti and Tj‘s incorpo-
rated executive environment. Besides, as there are n process parameters aj-1, aj-2, …, aj-n engaged 
in Tj and Tk’s knowledge coordination, i.e., Aj-k= {aj-1, aj-2, …, aj-n}, Tk‘s n runtime temporal 
states could be deduced according to Tj‘s runtime temporal state, as we demonstrated in Case2’s 
analysis. For Tk‘s n runtime temporal states, we could determined Tk‘s active interval to collabo-
rate with Tj for their cross-domain knowledge coordination’s initiated by the n process parame-
ters aj-1, aj-2, …, aj-n. Moreover, let TStart=min{TStart(Ti), TStart(Tj(

~ai-x)), TStart-Earliest(Tk(KCj-k)), 
TEnd=max{TEnd(Ti), TEnd(Tj(

~ai-x)), TEnd-Latest(Tk(KCj-k))}, the global time cost of Ti, Tj and Tk‘s 
executions, i.e., TTC(i-j-k)(ai-x/Aj-k), could be calculated according to Definition10, i.e., TTC(i-j-k)(ai-

x/Aj-k)=TEnd  TStart. 
 

 
 

 
 
 
 

Fig.9 Knowledge transferring styles from Ti to Tk through Tj . 

3) Temporal reasoning of n:1 knowledge transferring style 
Here, there are n process parameters ai-1, ai-2, …, ai-n engaged in Ti and Tj’s knowledge coordi-

nation, i.e., Ai-j= {ai-1, ai-2, …, ai-n}. For each process parameter, there is a temporal-dependency 
relation between ti-x(ai-x) and  tj-x(

~ai-x)’s executions, where ai-xAi-j. Associated with these n pro-
cess parameters, Tj‘s n runtime temporal states could be deduced out, as we demonstrated in 
Case2’s analysis, in Ti and Tj’s incorporated executive environment. Besides, Tj’s TStart-

Earliest(Tj(KCi-j)) and TEnd-Latest(Tj(KCi-j)) could also be deduced out. For Tj‘s n runtime temporal 
states, which one should be selected for deducting Tk‘s runtime temporal state? In this paper, two 
selecting strategies are proposed as follows. 

I) Let aj-y be a process parameter engaged in Tj and Tk’s knowledge coordination. As we pre-
scribed in Definition7’s interpretations, tj-1(

~ai-1) = tj-1(aj-1), tj-2(
~ai-2) = tj-2(aj-2), …, and tj-n(

~ai-n) = 
tj-n(aj-n) are held in executive logic and active interval. With these hypotheses, tj-y(aj-y){tj-1(

~ai-1), 
tj-2(

~ai-2), …, tj-n(
~ai-n)} is used to indicate that tj-y(aj-y)’s execution is uniquely promoted by one 

execution of tj-1(
~ai-1), tj-2(

~ai-2), …, and tj-n(
~ai-n). In this paper, it would be treated as a direct 

knowledge transferring process from Ti to Tk through Tj. Here, let tj-x(
~ai-x) be the unique 

knowledge consuming process for promoting tj-y(aj-y)’s execution, where ai-x{ai-1, ai-2, …, ai-n }. 
Accordingly, Tj(

~ai-x) should be selected as a referred temporal state for calculating Tk‘s runtime 
temporal state in Ti, Tj and Tk‘s incorporated executive environment. Fig.10 illustrates a direct 
knowledge transferring process from Ti, Tj and Tk that is associated with Before(ti-1(ai-1), tj-1(

~ai-

1); Ti-j=1) and Meet(tj-1(aj-1), tk-1(
~aj-1)) style of temporal-dependency relations. 
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Fig.10 A direct knowledge transferring process from Ti to Tk through Tj 

II) Let aj-y be a process parameter engaged in Tj and Tk’s knowledge coordination. If tj-y(aj-

y){tj-1(
~ai-1), tj-2(

~ai-2), …, tj-n(
~ai-n)}, we believe that there is an indirect knowledge transferring 

process from Ti to Tk through Tj. Here, two more fine-granular situations are taken into consider-
ation:  

(1) Here, tj-y(aj-y)’s execution interval has been specified in Tj‘s isolated executive environment. 
If tj-y(aj-y)’s runtime state (i.e., tj-y(aj-y)’s runtime execution interval [TStart(tj-y(aj-y)), TEnd(tj-y(aj-y))]) 
could also be determined in Ti and Tj‘s incorporated executive environment, Tj‘s runtime tem-
poral state that is associated with [TStart(tj-y(aj-y)), TEnd(tj-y(aj-y))] would be selected as a referred 
temporal state for calculating Tk‘s runtime temporal state. 

(2) Here, tj-y(aj-y)’s execution interval has been specified in Tj‘s isolated executive environment. 
If tj-y(aj-y)’s runtime state (i.e., tj-y(aj-y)’s runtime execution interval [TStart(tj-y(aj-y)), TEnd(tj-y(aj-y))]) 
could not be determined at runtime in Ti and Tj‘s incorporated executive environment, we  would 
take another selecting rule. In this situation, as [TStart(tj-y(aj-y)), TEnd(tj-y(aj-y))] is covered by time 
period [TStart-Earliest(Tj(KCi-j)), TEnd-Latest(Tj(KCi-j))], Tj‘s runtime temporal state whose end time 
equals to TEnd-Latest(Tj(KCi-j)) would be selected as a referred temporal state for calculating Tk‘s 
runtime temporal state in Ti, Tj and Tk‘s incorporated executive environment. It guarantees that 
the required knowledge assets for promoting tk-y(ak-y)‘s execution could be achieved before tk-y(ak-

y)‘s execution.  
For example, suppose that Ti and Tj‘s temporal-dependency relation is illustrated by Fig.8, in 

which Tj has two runtime temporal states respectively associated with two process parameters of 
ai-1 and ai-2. Now, a third task execution Tk is taken into consideration as illustrated by Fig.11. Let 
aj-y be a process parameter engaged in Tj and Tk‘s Meet(tj-y(aj-y), tk-y(

~aj-y)) style of knowledge 
coordination.  

(1) In the situation that tj-y(aj-y){tj-1(
~ai-1), tj-2(

~ai-2)}, if tj-y(aj-y)=tj-1(
~ai-1), Tj(

~ai-1) would be se-
lected as a referred temporal state for calculating Tk‘s runtime temporal state; if tj-y(aj-y)=tj-2(

~ai-2), 
Tj(

~ai-2) would be selected as a referred temporal state for calculating Tk‘s runtime temporal state.  
(2) If tj-y(aj-y){tj-1(

~ai-1), tj-2(
~ai-2)},  but we could determined the runtime state of [TStart(tj-y(aj-

y)), TEnd(tj-y(aj-y))] in Ti and Tj‘s incorporated executive environment, Tj‘s runtime temporal state 
that is associated with [TStart(tj-y(aj-y)), TEnd(tj-y(aj-y))] would be selected as a referred temporal 
state for calculating Tk‘s runtime temporal state. More specifically, as illustrated in Fig.11, if we 
could determine that the runtime state of [TStart(tj-y(aj-y)), TEnd(tj-y(aj-y))] is covered by Tj(

~ai-2)’s 
executive interval, Tj(

~ai-2) would be selected as a referred temporal state for calculating Tk‘s 
runtime temporal state. It guarantee that tk-y(ak-y) could timely achieve its referred knowledge 
from tj-y(aj-y)’s execution.  

(3) If tj-y(aj-y){tj-1(
~ai-1), tj-2(

~ai-2)} and [TStart(tj-y(aj-y)), TEnd(tj-y(aj-y))] could not be determined 
at runtime, Tj(

~ai-1) would be selected as a referred temporal state for calculating Tk‘s runtime 
temporal state, as its end time equals to TEnd-Latest(Tj(KCi-j)). It guarantees that the required 
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knowledge assets for promoting tk-y(ak-y)‘s execution could be achieved before tk-y(ak-y)‘s execu-
tion. 

 
 
 
 
 
 
 
 
 
 
 

Fig.11 An indirect knowledge transferring process from Ti to Tk through Tj. 

Once Tk‘s runtime temporal states are determined, we could calculate TTC(i-j-k)( Ai-j/Aj-k)’s value 
according to Definition10 for evaluating their cross-domain collaboration in time cost.  

4) Temporal reasoning of n1:n2 knowledge transferring style 
Suppose that there are n1 process parameters ai-1, ai-2, …, ai-n1, i.e., Ai-j= {ai-1, ai-2, …, ai-n1} for 

Ti and Tj’s knowledge coordination. As we demonstrated in Case2’s analysis, Tj‘s n1 runtime 
temporal states could be determined in Ti and Tj’s incorporated executive environment. Suppose 
that there are n2 process parameters aj-1, aj-2, …, aj-n2, i.e., Aj-k= {aj-1, aj-2, …, aj-n2} for Tj and Tk’s 
knowledge coordination. Here, we focus on how to deduce Tk’s runtime temporal states in Ti, Tj 
and Tk’s incorporated executive environment. 

In our method, the n2 process parameters engaged in Tj and Tk’s knowledge coordination are 
firstly classified into two groups (i.e., Group-1, Group-2). Group-1 consists of the process pa-
rameters, each of which is engaged in a direct knowledge transferring process from Ti to Tk 
through Tj as we discussed in n:1 knowledge transferring style. For brevity and without the loss 
of generality, let Group-1 consist of process parameters aj-1, aj-2, …, aj-m, i.e., Group-1={aj-1, aj-

2, …, aj-m}, where mn2. Group-2 consists of the process parameters, each of which is engaged in 
an indirect knowledge transferring process from Ti to Tk through Tj as we discussed in n:1 
knowledge transferring style, i.e., Group-2={aj-(m+1), aj-(m+2), …, aj-n2}. Here, Group-1Group-
2= and Group-1Group-2=Aj-k.  

For the m process parameters contained in Group-1, Tk‘s m runtime temporal states could be 
determined according to the first selected strategy presented in n:1 knowledge transferring style’s 
analysis. Furthermore, associated with the m runtime temporal states, a group of time period 
[TStart(Tk(

~aj-1)), TEnd(Tk(
~aj-1))], [TStart(Tk(

~aj-2)), TEnd(Tk(
~aj-2))], …, [TStart(Tk(

~aj-m)), TEnd(Tk(
~aj-

m))] could be determined. Similarly, for the n2m process parameters contained in Group-2, Tk‘s 
n2m runtime temporal states could also be determined as we discussed in the second selected 
strategy presented in n:1 knowledge transferring style’s analysis. Furthermore, associated with 
the n2m runtime temporal states, a group of time period [TStart(Tk(

~aj-(m+1))), TEnd(Tk(
~aj-(m+1)))], 

[TStart(Tk(
~aj-(m+2))), TEnd(Tk(

~aj-(m+2)))], …, [TStart(Tk(
~aj-n2)), TEnd(Tk(

~aj-n2))] could be determined. 
Let TStart-Earliest(Tk(KCj-k))=min{TStart(Tk(aj-1)), TStart(Tk(aj-2)), …, TStart(Tk(aj-m)), TStart(Tk(aj-

(m+1))), …, TStart(Tk(aj-n2))}, let TEnd-Latest(Tj(KCi-j)) = max{TEnd(Tk(aj-1)), TEnd(Tk(aj-2)), …, 
TEnd(Tk(aj-m)), TEnd(Tk(aj-(m+1))), …, TEnd(Tk(aj-n2))}, TCollaboration(Tk(KCj-k))’s value could be calcu-
lated out, i.e., TCollaboration(Tk(KCj-k)) = TEnd-Latest(Tj(KCi-j))TStart-Earliest(Tk(KCj-k)). Moreover, once 
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Tk‘s runtime temporal states are determined, we could calculate TTC(i-j-k)(Ai-j/Aj-k)’s value accord-
ing to Definition10 for evaluating their cross-domain collaboration in time cost.  

In practice, time checking is an important issue in an administrable system [22][23][24]. Case1 
and Case2’s analyses cover nearly all the possible temporal-dependency situations engaged in 
collaboration between two task domains. Case3 covers nearly all the possible temporal-
dependency situations engaged in collaboration among three task domains. They provide basic 
temporal-dependency situations for more complex temporal analysis in cross-domain collabora-
tion. 

The temporal knowledge modeling and the temporal reasoning logic presented in this section 
could be illustrated by Fig.12, which is essentially an application of linear reasoning process cor-
responding to Markov model or Markov chain [51]. More specifically, for two task domains en-
gaged in certain collaboration, their cross-domain temporal modeling is often initiated by a pio-
neer task domain’s knowledge modeling. Only after a pioneer task domain’s temporal specifica-
tion is determined, the succeeding task’s temporal modeling could be unfolded in a serial way.  

 
 
 
 
 
Fig.12. Application logic for temporal modeling and temporal reasoning between two task do-

mains for their cross-domain collaboration. 

Here, the time complexity of the linear reasoning process illustrated by Fig.12 would be ana-
lyzed to evaluate the feasibility of our proposal. Let Set-TE be a set of task domains engaged in 
global collaborative problem solving, and Ni-j be a set of process parameter ai-j engaged in Ti and 
Tj‘s collaboration. Besides, let |Set-TE|=m, and |Ni-j|=ni-j. For calculating global time cost, we 
need to calculate local time cost between two collaborative task domains, from T1 to Tm, for m-1 
times in a hierarchical way. For task domain Ti and Tj, the time cost is Ο(ni-j). So, the time com-
plexity for calculating the global time cost is Ο(n1-2+n2-3+...+n(m-1)-m). 

Related	Works	and	Comparison	Analysis			
In past decades, problem solving environment(PSE) [14][27], knowledge modeling framework 
[9][15][50], method discovery [9][11][34], and task-specific or domain-specific scheduling ap-
plications [4][9][24][38][50] have been investigated in collaborative problem solving domain. 
Compared to these existing research works, the main contributions of this paper are summarized 
from the following aspects. 

(1) About knowledge modeling framework development, CommonKADS is enacted based on 
systematic separation between task, method, and domain [9][18]. By introducing an “applica-
tion” component into its definition, a knowledge modeling framework, named TMDA, are intro-
duced in [9][50]. As mentioned in [9][50], TMDA is constructed based on a Task-Method-
Domain-Application application logic. Compared to CommonKADS  and TMDA knowledge 
modeling framework, POTMe framework consists of four typical components of problem, ontol-
ogy, task, and method that are coordinated by a Problem-Ontology-Task-Method application log-
ic. It provides a well-structured knowledge association context for problem cognition and solving. 
Furthermore, in TMDA framework presented in [9][50], a task is often pre-specified without def-
inite problem context. Their researches focus on how to find efficient methods for a task imple-
mentation. In our research, a task execution owns an explicit application context specified by cer-
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tain knowledge-dependency and temporal-dependency definitions for cross-domain collaboration. 
Here, once a task is definitely specified in an application context, an existing task-specific meth-
od library (e.g., method library presented in [9]) would be helpful for promoting task execution 
through method discovery. Therefore, Task and Method objects are two knowledge components 
shared by POTMe‘s application logic and TMDA’s application logic. {Problem, Ontology, Task, 
Method}  {Task, Method, Domain, Application} = {Problem, Ontology, Task, Method, Domain, 
Application} covers nearly all knowledge components engaged in collaborative problem solving. 
They could satisfy more complex knowledge modeling requirement with a combined application 
logic of Problem-Ontology-Task-Method-Domain-Application. 

(2) As mentioned in [9], “scheduling deals with the assignment of jobs and activities to re-
sources and time ranges in accordance with relevant constraints and requirements.” Some sched-
uling methods, such as time-related Petri nets (e.g., Time Petri net, Timed Petri net and Timing 
Petri net), have been presented for evaluating task enactments and executions [24]. In this paper, 
POTMe‘s knowledge-based temporal modeling and its application is reified into a concrete tem-
poral reasoning rule, i.e., FollowMe temporal reasoning rule, for enhancing the validity of task 
enactments from scheduling aspect. It provides a method for evaluating global scheduling appli-
cation, through simulating cross-domain collaboration in an incorporated executive environment. 
Compared to Petri net-based scheduling methods, time complexity of our approach is degraded 
in a limited scope. The time complexity of the reasoning process for global joint time is O(n1-

2+n2-3+...+n(m-1)-m). For Petri nets, we should use m places to represent m meta-cognitions respec-
tively. The capacity of each place mi is ni-j. Hence, there are n1-2n2-3...n(m-1)-m reasoning steps 
and the time complexity is O(n1-2n2-3...n(m-1)-m). Obviously, the time complexity of our ap-
proach is smaller than the time complexity of time-related Petri nets, which is helpful for reced-
ing state explosion problem as mentioned in [51].  

Here, the temporal reasoning process is enacted among distributed process fragments, uncer-
tainty issues or some exceptions at runtime may degrade the generic nature of our methods in 
practice. The methods presented in [21][37][41][42][43] are helpful for dynamically dealing with 
uncertainty issues or exceptions at runtime. Another limitation of our approach is that our work 
just supports unilateral learning-compliant knowledge dependency and temporal dependency. If 
there are some bidirectional knowledge dependency and temporal dependency, the approaches 
presented in this paper should be perfected or modified to deal with the complex application re-
quirements. In our future research, we would centralize on exploring a more complex situation 
with bidirectional knowledge and temporal-dependency relation based on the approaches pre-
sented in this paper. 

Conclusions	and	Future	Work	
In this paper, we investigated a novel knowledge modeling framework, named POTMe, for ena-
bling collaborative problem solving. POTMe‘s knowledge-based temporal modeling and its ap-
plication are reified by a concrete temporal reasoning rule, i.e., FollowMe temporal reasoning 
rule, for enhancing the validity of task enactments from scheduling aspect. It provides a method 
for evaluating global scheduling applications, through simulating cross-domain collaboration in 
an embedded executive environment. The scenarios are validated by an industrial case study. 
Although our methods have been put into practice in a collaborative product development, more 
real-life and benchmark applications are under way as our future research. 
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