
Research on software safety growth testing method based on FTPM
model

Zhongxiao Ji1, a, Guohua Jiang2, b
1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,

Nanjing, 210016, China
2College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,

Nanjing, 210016, China
aemail:Jacknuaa@163.com, bemail:2019151095@qq.com

Keywords: Safety Testing; Fault Tree Analysis; Markov Model; Running; Scenario

Abstract. In the key areas of safety, the safety requirements of the software are becoming higher
and higher. However, there are all kinds of safety testing methods, or the presence of state space
explosion, or the test case is huge, and the safety testing efficiency is low. In order to solve this
problem, this paper proposes a safety testing method, which is based on FAPM model. Getting
danger of hazardous events which is through using dynamic fault tree analysis. And it is based on
the call graph of the program to build the mapping relationship between basic events and operation,
operation and code. Then, build a scene using a Markov model. According to the model generation
of safety test case, and according to the test stop criterion to judge the adequacy of the testing.

Introduction
Along with the rapidly development and progress of the information, the application of software

has been extended to various field of our social life, including the financial industry, the power
industry, the newly aerospace and the medical and health services. Besides, software play an
increasingly essential role in the control of the safety critical system, in the field which required
much higher security. Once these fields which are involved in safe functions lose control, it may
cause inestimable safety accidents; this software is called safety critical software. In 1983, the
Soviet missile early warning system failure occurs, which nearly leads to the third world war; In
2009, one reason of the network incident of six provinces in the south of China may be caused by
storm player software mass user requests. Therefore, it is very necessary to test the safety of the
critical software security. At present, for safety critical software test, there are a lot of researches in
theory, including the study of the test framework and test methods; For example, the article[1]
proposes a new security analysis framework, and software security key test; Article[2] reviews the
safety testing methods and analysis of the safety testing standards. However, the methods in
practical engineering are not abundant, or there are many serious problems in the state space
explosion or the great amount of test cases. This paper mainly puts forward a model based on
FAPM security testing methods, to improve the efficiency of safety testing and reduce the number
of test cases.

The current methods and the disadvantages of the software safety testing
Software security means that the software running does not cause the ability of system hazards

[3]. Although software cannot lead to severe danger directly; But the software failure can result in
system failure directly, thus leading to the damage of life property and environment. The first time
of Software security (software safety) appeared was in 1979, when the American released the
military standard MIL-STD-1574A[4]. As the application software is becoming more and more
widely used, the safety of software is also got more attentions in our daily life. Depending on the
different concerns, software Security Testing can be in divided into the following aspects: software
failure Safety Testing and software confidential Security Testing. This article mainly focuses on the

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015)

© 2016. The authors - Published by Atlantis Press 588

software failure safety testing. For software failure safety tests part, the commonly used test
methods is safety testing fault tree analysis methods and the Petri net safety testing method.

The safety testing method is based on fault tree analysis. This method is basis of the conditions
that may lead to the danger and failure of minimum cut sets, to generate the safety cases test, and
ensure the adequacy of safety testing; but it will take a lot of energy and larger workload. Besides,
this method did not cover the risk of danger or fault degree, but analysis every risk which will bring
a lot of repetitive work.

Safety testing method based on Petri net, which mainly use the advantages of Petri net i.e.
intuitionistic and visual, building test cases of software security testing. This method is searching
out the hazardous states in the state table, constructing a state transition sequence which transfer
from the initial state to a hazardous state, and the state transition sequence is a safety test cases; next,
generate software safety test suite according to this method. This method needs to spend a lot of
energy in the process of generating the reachability graph, and it may appear the problem of state
explosion.

Safety Testing Process Based On the FTPM Model
Through analyzing the common security testing methods, we can find that each type of safety

testing methods have some problems, such as security testing method based on Petri net has the
problem of state explosion. However, these methods have their unique advantages, e.g. the fault tree
analysis method analysis can fully meet the testing requirement, the Petri net is intuitionistic and
visual; As a result, integrating a variety of methods, generating reasonable safety testing strategy is
worth considering. The safety testing method (Fault Tree Profile Markov, FTPM) proposed in this
paper combines the DFTA, safety association profile and Markov using model. Combining with the
adequacy of FTA, test purpose of safety association profile and the advantages of the correlation of
Markov model. This method is mainly based on improve the efficiency of safety testing and reduce
system risk quickly, find out the higher safety risk system path through building safety test model,
execute safety testing aim at those paths can reduce the risk of the system quickly. It is purposeful
and high-efficiency. The basic framework of the method, as shown in figure 1.

Constructed FTPM Safety Testing Model
FTPM model is based on risk, not only focus on the risk occurrence probability, and focus on the

criticality caused by the risk. FTPM model building process, as shown below:
(1) Use the method of DFTA to obtain hazard and basic events cause the risk;
(2) Analyze of the basic events to obtain the corresponding software running;
(3) Build Program call graph, on this basis to build the software running transfer graph;
(4) According to the risk of running, determine the key running and key scenes;
(5) Build Markov using model based on scenario;
(6) According to the risk of each scenario chain, determine the test order of Markov chains.
Obtain the Hazard Events. Hazard event(HE) is made up of one or more of the basic event

according to certain order, consisting of a collection of basic events which may lead to hazard; A
subset of the collection of the basic event system. Several basic events occurred in a certain way
and order, the system may be dangerous. At present, FTA is a safety analysis techniques, widely
applied in the system safety analysis. FTA provides an intuitive and simple way to descript of the
system risk. However, the traditional FTA used in the analysis of dynamic system, being unable to
describe the system behaviors which depend on time and sequence order. To solve this problem, the
scholars in the field extend the fault tree analysis, get the dynamic fault tree (DFT). DFT is mainly
on the basis of fault tree, add some logic gate which can represent the order of sequence, mainly
PAND, function-correlated gate and so on. Literature [6] by introducing dynamic logical gate such
as PAND and function-correlated gate, extending traditional fault tree to the dynamic fault tree, so
that the traditional fault tree has the ability of safety analysis was carried out on the dynamic system.
Using the common software fault identification method, such as FMEA, PHA to obtain a list of

589

dangerous or malfunction of the system, Then, each item in the list was executed the safety analysis
using the dynamic fault tree analysis method, get the hazardous and basic events cause risks. Figure
2 is a dynamic fault tree model, in the fault tree, H is risk events, G1 to G4 are intermediate events,
A1 to A6 are basic events; between the basic events are mutually independent and between
intermediate events G3 and intermediate events G4 exist a logical order.

Building Safety testing model based on Markov model

Generating Safety test case set based on Markov chain

Execute test cases and record the problems found.

Regression testing

Meet safety testing
standards

End
Y

N

Start

G1 G2

G3A1 G4

A2 A3 A4 A6A5

H

Fig.1 Safety testing process based on FTRM model Fig.2 Dynamic fault tree model

Through the analysis of dynamic fault tree model, we can get the hazard events cause hazard H,
i.e. minimum cut set. The PAND in the dynamic fault tree have an order relation, namely only G3
and G4 happened first, then G2 can happen; Using the top-down method of fault tree search
algorithm, i.e. Fussell algorithm to generate the minimum cut set. And the minimum cut set
generated as shown in table 1.

Table 1 Fussell algorithm for solving the minimum cut set table
1 2 3 4 minimum cut set

H

G1 (A1,A2) (A1,A2) (A1,A2)

G2 (𝐺𝐺3,𝐺𝐺4)�����������������⃗
(𝐴𝐴2,𝐺𝐺4)�����������������⃗ (𝐴𝐴2, (𝐴𝐴4,𝐴𝐴5,𝐴𝐴6))�������������������������������������⃗

(𝐴𝐴3,𝐺𝐺4)�����������������⃗ (𝐴𝐴3, (𝐴𝐴4,𝐴𝐴5,𝐴𝐴6))�������������������������������������⃗

According to the definition of hazard events, each of the minimum cut sets is a hazard event. In
table1, (𝐺𝐺3,𝐺𝐺4)�����������������⃗ means G3 happened before G4 happen; (𝐴𝐴2, (𝐴𝐴4,𝐴𝐴5,𝐴𝐴6))�������������������������������������⃗ means A2 happened
before A4, A5 and A6, but between A4, A5, A6 does not exist an order.

Mapping of Code to Running Based Procedure Call Graph. Procedure call graph is a kind of
graph which describes the software system structure. It can describe the call relationship between
functions clearly and intuitively. It also can provides a lot of help to analysis and test the software.
At present, there are a lot of researches on method of procedure call graph building. Literature [7]
proposes a process-oriented program call graph generation algorithm and implement. In the process
of building a FTPM model, based on procedure call graph to build the transfer graph of software
running. Using software test tools LDRA_Testbed to generate procedure call graph in process.
Transfer diagram process which transfer from code to software running, as shown below:

(1) Generate software system call graph through the software test tools LDRA_Testbed;
(2) Traverse call graph, instrument the function, generating function execution path graph;
(3) Traversal function execution path graph, combined with the software requirements and

design, generate software running transfer diagram.
Next, use a simplified civil aviation aircraft landing gear system [8] as an example, introduced

the transfer process which transfer from code to software running. First of all, using LDRA_Testbed
analysis software code, generate procedure call graph, as shown in figure 3; Secondly, traverse gear
detection system function call graph, do syntax analysis for the node which out-degree is greater
than or equal to 2. Plug code into the beginning, ending and branch location. Generate specific
function execution path diagram, as shown in figure 4(Grammar analysis but not a logical
branch, No grammar analysis, Grammar analysis and a logical branch). Finally, traverse
function execution path diagram of the system, combining with the system requirements and design
documents, generate software running transfer diagram, as shown in figure 5.

590

Monitor200

Monitor200_LG Monitor200_Gather

LLandMonitor RLandMonitor MLandMonitor Gather_LG

LGNoDown

F_Confirm MsgSend AbProcess

Monitor200

Monitor200_LG

Monitor200_Gather

LLandMonitor

RLandMonitor

MLandMonitor

Gather_LG

LGNoDown

F_Confirm

MsgSend AbProcess

YES

Y

N

OP1 OP2 OP3

OP9

OP4

OP10

OP7

OP5

OP8OP6

YES

N

Fig.3 Function call graph Fig.4 Function implementation path graph Fig.5 Software running graph
Mapping Relationship between Software Running and Basic Events. Definition one: Basic

Event (BE) is the atomic event which cause danger happening. It’s inseparable in the event level.
The basic event can be expressed in a triple, i.e. 𝑬𝑬𝑬𝑬 = (𝑬𝑬𝑬𝑬_𝒅𝒅𝒅𝒅𝒅𝒅,𝒑𝒑𝒑𝒑𝒑𝒑,𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑). 𝑬𝑬𝑬𝑬_𝒅𝒅𝒅𝒅𝒅𝒅 is the
description of the basic event; 𝒑𝒑𝒑𝒑𝒑𝒑 is the necessary condition of basic event trigger; 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 is the
result of the basic event happened.

Definition two: Software Action (SA) is the function completed in accordance with the rules.
Definition three: Software Operation (OP) is the independent action completed according to

certain specifications. OP can be expressed in a triple, i.e. 𝑂𝑂𝑂𝑂 = (𝑝𝑝, 𝜀𝜀,𝐹𝐹). 𝑝𝑝 is the probability of a
software running occurrence; 𝜀𝜀 is the criticality when a running failed; 𝐹𝐹 is a software action this
OP belong to.

SA is the function of the software. Each SA may be the results of the multiple software running.
SA, therefore, is a collection of the running, can be represented
as: 𝑆𝑆𝐴𝐴 = (𝑆𝑆𝐴𝐴_𝑑𝑑𝑑𝑑𝑑𝑑,𝑂𝑂𝑂𝑂_𝑠𝑠𝑠𝑠𝑠𝑠,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃), 𝑆𝑆𝐴𝐴_𝑑𝑑𝑑𝑑𝑑𝑑 is The description of the SA; 𝑂𝑂𝑂𝑂_𝑠𝑠𝑠𝑠𝑠𝑠 is a
collection of multiple software running, i.e. (𝑜𝑜𝑜𝑜1, 𝑜𝑜𝑜𝑜2, … … , 𝑜𝑜𝑜𝑜𝑛𝑛); 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is a collection of software
states which the SA need to meet, any condition in the collection met, can perform the action;
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 a collection of software states after the SA performed.

The basic events and software actions are gained through the system requirements and design
documents, descriptions of both are used in natural language. So, there is no way to automate
matching. We need to implement by artificial matching. The matching rules between them, is as
follows:

(1) When the description of the basic event and the description of software action is consistent in
the semantic level; 𝑝𝑝𝑝𝑝𝑝𝑝 and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 in basic event respectively belong to 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 in
software action. Then, we can consider that there is a corresponding relationship between basic
events and software action, expressed as (EB, SA).

(2) When the description of the basic event and the description of software action is inconsistent
in the semantic level, we can say that there is not a corresponding relationship between basic events
and software action.

Because of the natural language exists ambiguity, the corresponding relationship between basic
events and software action is a one-to-many or many-to-many relationship instead of a simple
one-to-one relationship. Therefore, between the basic events and software running is also a
one-to-many or many-to-many relationship. A ground safety management system as an example.
There is a basic event in the system, i.e. 𝐴𝐴 = (𝑑𝑑𝑑𝑑𝑑𝑑,𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴) ; two software
action:𝐵𝐵1 = (𝐵𝐵1_𝑑𝑑𝑑𝑑𝑑𝑑,𝑂𝑂𝑂𝑂1_𝑠𝑠𝑠𝑠𝑠𝑠,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1and𝐵𝐵2 = (𝐵𝐵2_𝑑𝑑𝑑𝑑𝑑𝑑,𝑂𝑂𝑂𝑂2_𝑠𝑠𝑠𝑠𝑠𝑠,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2 , among them, the
corresponding two collection of software running: 𝑂𝑂𝑂𝑂1_𝑠𝑠𝑠𝑠𝑠𝑠 = {𝑏𝑏11, 𝑏𝑏12, … … , 𝑏𝑏1𝑛𝑛} and 𝑂𝑂𝑂𝑂2_𝑠𝑠𝑠𝑠𝑠𝑠 =
{𝑏𝑏21, 𝑏𝑏22, … … , 𝑏𝑏2𝑛𝑛}. Two assumptions: 𝐵𝐵1_𝑑𝑑𝑑𝑑𝑑𝑑,𝐵𝐵2_𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑𝑑𝑑 are consistent in the semantic level;
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃1, 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∈ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2. There is a corresponding relationship
between a basic event and software action, i.e. (𝐴𝐴,𝐵𝐵1)、(𝐴𝐴,𝐵𝐵2). SA is a implementation of a software
running, consists of software running. There is a corresponding relationship basic event and
software running. As A result, the corresponding relationship between the basic event A and running
as: (𝐴𝐴, 𝑏𝑏11), (𝐴𝐴, 𝑏𝑏12), ……, (𝐴𝐴, 𝑏𝑏1𝑛𝑛), (𝐴𝐴, 𝑏𝑏21), (𝐴𝐴, 𝑏𝑏22), ……, (𝐴𝐴, 𝑏𝑏2𝑛𝑛)；; According to the different
risk of each running, we can determine the key running which have higher risk and correspond to
the basic event, i.e. (𝐴𝐴, 𝑏𝑏12)and(𝐴𝐴, 𝑏𝑏21).

591

Building Scenarios Used Markov Model. Through the analysis of the Operation transfer
diagram, you can get the operation of the whole module or system. However, because of the
different risk of each operation, the safety testing priority also not the same. Operation which the
risk coefficient is larger, is called a safety key running. Due to software safety testing, focus on the
risk of the whole system; If only focus on the risk of single operation, requires a large number of
test cases, spend a lot of time and energy, bring huge workload for the assessment of the whole
system, and also have a little help for the risk assessment of the system. Therefore, you need to
order these key operations according to certain order to constitute an execution path from initial
state to the end state of the system, and then do the security testing. In this way, not only is there a
purpose for safety testing, and also can meet the goal of security testing quickly. So you need to
make as much as possible the key operation concentrated on a security testing path.

We can summarize software action each running belongs to according to the transfer diagram of
running and the execution graph of functions. Obviously, the software action is a collection of the
running. At the same time, the running of software action, combined in different ways, made up the
different scenarios. And the scenarios is the specific implementation of software actions. Among
them, the states which execute the action need to meet is the prepositive states of the scenarios; after
the action execution, the software states reached is the postpositive states of the scenarios. Assume
that each action execution result is unique, so the software reaches the state is also unique.

Definition 4: more than one run in accordance with certain rules, the external performance of a
clear, known as the scene [9]. The software state is called as scene, which is constituted by some
running in accordance with certain rules and has explicit external performance. The scene can be
represented as a four tuple 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶 = (𝑂𝑂𝑂𝑂,𝑃𝑃𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇);In which, 𝑂𝑂𝑂𝑂: represents a sequence of
operations in a certain rule; 𝑃𝑃𝑃𝑃𝑃𝑃 : represents the pre-condition of the scene, that is, the condition for
the execution of the scene; 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 : represents the post state of the scene, that is, the state of the
system after carrying on the scene; 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 : represents a mapping, 𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 → [0,1] ,and
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(s,t)=prepresents that the possibility that execute the scene and satisfy the system's post
condition” t” after satisfying the pre-condition” s” is p.

Nature 1: the various operations constituting the scene are independent to each other.
Nature 2: the probability of a transfer of each scene is smaller than or equal to 1 and the sum of

all the probabilities of transfer to the next scene is 1, as ∑ 𝑝𝑝𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 ; and 𝑝𝑝𝑖𝑖 represents the

probability of the scene transferring to the scenario 𝑖𝑖.
Because the scene is a sequence of operations, the operation sequence from the initial state of the

system to the termination, without an explicit external performance, can be transformed into a scene
chain from the initial scene to the termination scene. The link methods of the various scenes are
mainly refer to Markov model commonly used in the software reliability testing [10].The generation
process of the Markov which is scene level will be introduced through the Markov formation
process of the landing gear detection system described above. Assuming that the plane is currently
in the air, the scenes are satisfied with the table 2.

Table 2 The pre-condition and post condition that each scene meets
Scene Pre-condition Post condition

SCEN1 PreL L_OK
SCEN2 PreL No
SCEN3 L_OK R_OK
SCEN4 L_OK No
SCEN5 R_OK Yes
SCEN6 R_OK No

Note: SCEN1 to SCEN6 represents six different states of the landing gear detection system.
According to the conditions of the scene and the basic nature of the Markov process, we can

generate such a scene level Markov model, shown in figure 6.

592

Idle …… PreL L_OKSCEN1 0.95

No

SCEN2 0.05

R_OKSCEN3 0.90

SCEN4 0.10

Yes

SCEN5 0.99SCEN6 0.01

Figure 6 The Markov model of landing gear detection system

Generate safety test cases. According to the difference of the probability the operation occurs
and the criticality the failure causes, the operation can be divided into two kinds of sets: safety
critical operation and common operation. Safety critical operation is the focus of the safety testing.
But a single key operation can not necessarily lead to the occurrence of dangerous. Only a
hazardous event can lead to the danger happening. Those scenes including critical operations are
called as critical scene. Because of the difference of the number of critical operation, the criticality
of critical scene and the degree of safety testing will be different. The steps for safety testing are as
follow:

(1) According to the probability that each critical operation in the scene occurs, the critical
probability that the scene occurs is calculated: 𝑝𝑝 = ∏ 𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1 , So, we can get the risk of each
scene: Risk = 𝑝𝑝 ∗ 𝜀𝜀 = ∏ 𝑝𝑝𝑖𝑖𝑛𝑛

𝑖𝑖=1 ∗ max {𝜀𝜀1, 𝜀𝜀2, … … , 𝜀𝜀𝑛𝑛}.
(2) According to the determined critical event and the risk of each scene, it may be possible to

link as many hazardous events as possible to a Markov chain;
(3) Confirm input and predict output for the critical operation of the determined Markov chain.
Test Termination Criteria. Before safety testing, the risk of each Markov chain in the Markov

model has been calculated, and the test has been sorted according to the priority. The higher the risk
value, the higher the priority.

Guideline 1: Choose the Markov chain with the highest risk value to carry on testing each time.
Guideline 2: After each test, modify the key operation with the highest risk in the Markov chain;

Then set the probability that the operation can also lead to the risk as 𝑝𝑝; Calculate the risk of each
Markov chain again 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖.

Guideline 3: If the risk value of the whole system,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎, is smaller than the safety testing
standard, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, the safety testing will stop. Among them, 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 is the sum of the risk of each
Markov chain, 𝑅𝑅𝑅𝑅𝑠𝑠𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎 = ∑ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛

𝑖𝑖=1 .

Conclusion
The purpose of safety testing is to find and solve the security flaws whose risk is bigger, and this

shows safety testing has strong pertinence; But a single safety testing method, for example the
safety testing method based on fault tree, has some problems, such as the undefined purpose, the
space explosion state and so on. Therefore, we need to combine a variety of methods to enhance the
advantages and avoid the disadvantages. In this paper, the testing method based on the safety testing
model, FTPM, has a strong purpose, can find the security flaws existing in the software quickly, and
need few safety testing cases; It is efficient and saves the test time and other resources. A single
safety testing method has various shortcomings, so, the safety testing combined with a variety of
methods will be one of the focus of the future research.

References
[1] Medikonda BS, Panchumarthy SR. A framework for software safety in safety-critical systems.
ACM SIGSOFT Software Engineering Notes, 2009, 34(2):1−9. [doi: 10.1145/1507195.1507207]
[2] Huang ZQ, Xu BF, Kan SL, Hu J, Chen Z. Survey on embedded software safety analysis
standards, methods and tools for airborne system. Ruan Jian Xue Bao/Journal of Software,
2014,25(2):200−218 (in Chinese). http://www.jos.org.cn/1000-9825/4530.htm
[3] Athalye P, Maksimovic D, Erickson R. High-Performance front-end converter for avionics
applications. IEEE Trans. On Aerospace and Electronic Systems, 2003,39(2):462−470. [doi:

593

10.1109/TAES.2003.1207258]
[4] USAF. MIL-STD-1574A. System safety program for space and missile system. Arlington:
Department of Defence, 1979.
[5] Oded Tal, Scott Knight, Tom Dean: Syntax-based Vulnerability Testing of Frame-based
Network Protocols. In proc. Second Annual Conference on Privacy, Security and Trust, October
13-15, 2004, Wu Centre, University of New Brunswick, Fredericton, New Brunswick, Canada (PST
2004).pp.155-160.
[6] Dugan J B, Bavuso S J, Boyd M A. Dynamic fault-tree models for fault-tolerant computer
systems. IEEE Transactions on Reliability, 1992,41(3):363-377.
[7] XIE Gang. Design and implementation of C program call graph construction algorithms [J].
Journal of Guizhou Normal University (Natural Sciences),2009,(4):77-80.
[8] Wei Xiaohui. Dynamic Analysis of Aircraft Landing Impact and Vibration Attenuating
Techniques [D].Nanjing: Nanjing University of Aeronautics and Astronautics，2005

[9] Johannes Ryser, Martin Glinz. A Scenario-Based Approach to Validating and Testing Software
Systems Using Statecharts. Presented at the 12th International Conference on Software and Systems
Engineering and their Applications ICSSEA'99. Proceedings: CNAM, Paris, France.
[10] Yan J, Wang J, Chen HW. Deriving software Markov chain usage model from UML models.
Journal of Software, 2005,16(8):1386−1394. DOI: 10.1360/jos161386

594

