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Abstract. We address the problem of describing and integrating long range information efficiently, 
such as the information demonstrated by super-pixels (patches), into conditional random field (CRF) 
model for object segmentation. For those purpose, a novel structural relationship between patches are 
defined for evaluating super-pixels’ similarity. The structural relationship between super-pixels will 
focus on whether two patches can display similar information of objects’ global appearance. 
Furthermore, a regression model is learned for super-pixels classification based on analyzing their 
structural relationship between super pixels and initial object hypothesis. Finally, a pixel-level CRF 
model that integrates information of color, texture and super-pixels is constructed to obtain 
segmentation results. Compared with traditional super-pixels or solely pixels based model, our 
method can combine the complementary information provided by pixels and super-pixels and 
generate better performance. 

Introduction 

Image segmentation is an important problem in computer vision, which focuses on partitioning 
image pixels into several distinct regions. There are mainly two classes of segmentation algorithms. 
One class includes automatic segmentation methods, such as active contour [1], normalized cut [2] 
and clustering [3]. The other class relates to interactive methods with user guidance. In interactive 
segmentation, users can label pixels as foreground or background with interaction approaches. These 
user guidance may be helpful to reduce the complexity of pattern modeling as well as its ambiguity 
for segmentation. In the past few years, various interactive segmentation methods have been 
proposed [4, 5, 6]. 

As to integrate super-pixels information into segmentation, many methods have been proposed. In 
[7], a tree-structured conditional random field is constructed to integrate prior in patches. In [8], 
image is divided into several patches via over segmentation. Then patches are labeled via specially 
trained models. In [9], the image is represented by a hierarchical segmentation tree then a ”pylon” 
model is built to combine the segments come from different layers of the tree. In [10], a graph-based 
image segmentation method (patch-cuts) that incorporates features and spatial relations obtained 
from image patches is presented. In [11], the robust PN model is proposed to ensure label consistency 
of pixels in the same super-pixels. Unlike those models, we take the prior information provided by the 
super-pixels as a global feature which is integrated into CRF model with optimal weighting. 

Our intuition is when the pattern exhibited by pixels is sparse, method such as graph cut may fail 
due to it cannot find a path. As shown in Fig.1 (a), the pixels displayed in red-boxes cannot display 
discriminative cues for classification. By introducing long-range cues (super-pixels’ information) as 
the global features, pixels will display more powerful intermediate representation of an object. Our 
main contributions are the following: 

1). We construct a novel method for measuring patches’ similarity, considering whether they can 
display similarity global appearance. 

2). A patch classification method is presented and the results are projected on pixel level. 
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3). A pixel-level CRF model is constructed for segmentation, based on optimal feature fusion, 
followed by patches classification. 

 

  
(a)                          (b)                         (c)                         (d)                          (e)  

 
Fig. 1. From left to right: (a) Initialized seeds. (b) The hypothesis generated by gaussian mixture 

model learned from seeds. (c) Result of GC.  (d) Hypothesis of combined features. (e) Result of 
proposed method. 

Formulation 
Image segmentation can be modeled with a conditional random field (CRF). Consider a random 

field F  defined over a set of variables 1 2{ , ,..., }NF F F . The domain of each variable is a set of labels 

1 2{ , ,..., }kL =    . Denote C  the semantic label. Let 1{ ,.., }NI I I=  be the observed data 
corresponding to image information. iI  is the feature vector at pixel i . iF  represents the label 
assigned to pixel i . A CRF model is described by a Gibbs distribution: 
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where ( , )G ν ε=  is a graph on F  and c  is a clique belonging to a set of cliques GC . The weigh 
parameters w  is a 2N ×  matrix 1 | |{ ,..., }i Vw w w= . iw  is a N -dimensional vector 1 2[ , ,..., ]T
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and N  is the feature dimension. Z  is the normalizing coefficient. In our approach, an energy 
function E  is designed as the linear function of parameters and the prior information 
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The energy function (1) ( | )iE F I  and (2)
, ( , | )i j i jE F F I  is expressed in terms of single-site and 

pair-site clique potentials, which means node feature function and feature vector for edge ( ),i j  with 
respective node labeling iF  and jF . Three features, global feature gbP , color model gmmP  and texture 

texP  are used to define the single-site model.  (2)
pairE  is a pairwise term between neighboring pixels. 

Information Provided by Super-pixels 

Global Appearance Generated by Patches. 
The basic assumption is that the same global appearance can be learned from similar patches. 

Mainly there is the difference between GMM parameters, we want to measure it by hypothesis.  It is 
measured by the information generated by pixels in related patches. The spatial distribution of 
figure-ground hypothesis generated via pattern learned from a patch. To train GMM for patch i  and 
the related figure-ground is described using iH . The basic assumption is similar patches may display 
similar hypothesis. The classifier is written as: 
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where i  is pixels in region q  and gmm texP +  is combined feature of color and texture and averaging 
strategy is applied. We take image of antelope shown in Fig.1 for example. From Fig.2, even if in the 
complex scene, confusing part, such as hindquarter, have higher overlap soccer compared with grass 
region. 

 
Fig. 2. From Hypothesis generated via statistics of pixels in related patch labeled as red. 

 
Structural Relationship between Random Patches. 
The intuition is that if the two patches can reveal similar statistics, the related object hypotheses 

learned by them may be similarity. The patch set is defined as { 1,..., nP P }. The similarity matrix  

n nM ×  between all patches is defined, ( , ), , 1,..,M i j i j n∈  means the similarity probability with patch 
i  and  j . 
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where iH  represents the segmented foreground area of initial hypothesis generated by statistic of 

patch i  and its complement is iH . ( , ) (( ( , ) ( , )) / 2 1)p nM i j exp M i j M i j= + − . Relationship of six 
patches in Fig.2 with S is listed in Table 1. 

Table 1. Relationship with Seed Patch. 

 
 

Table 2. Relationship between Patches. 

 
 

Clearly, patches P1, P3, P4 demonstrate higher similarity with initialized hypothesis compared 
with other patches. Pairwise Relationship between six patches is listed in Table 2. P1, P4 and P3 
belong to object, they demonstrate higher similarity rate with each other.  For example, P3 and p4 is 
more close to P2 compared with other patches. Encouraged by those observation, the structural 
relationship is coded into CRF model. 
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Global Classification of Super-pixels. 
When pixels cannot exhibit continuous pattern, method such as graph cut may fail due to it cannot 

find path. To modify the probabilities given by the local pixel-level classifiers, a global level 
classification is presented considering super-pixels' structural relationship between initial 
segmentation. For segmentation, the initial object hypothesis s  can be  obtained by users' input or 

objects' prior model. The patch i 's overlap rate with initial object hypothesis   ( , ) i s
ov

i s

H H
P i s

H H
= 



 is 

computed firstly. The histogram histP  of color and texture information in a region is used for 
classification. Moreover, the similarity between initial segmentation and hypothesis generated by 
each patch ( )hsP i  is taken as a feature on image level. Then the sparse feature set { , , }sp ov hist hsf P P P=  
is used for training a regression model and the region i 's association probability with object is 

( ) T
reg spP i fµ= , where µ  is the parameters for regression model. As shown in Fig.1,  the combined 

feature is more discriminative combined with the region probability . 

Energy Function 

Local Features. 
Our CRF model is defined on pixel level and three features, including local and global features, 

are integrated into the model. We choose color and texture as the local features. The gaussian mixture 
model (GMM) is used for describing color model. Let P ( ; )r q qI F l=  be the likelihood probability 
density function (PDF) of the color on a pixel p  associated with label l . The color models are 
represented as GMM 1{ , , }C

c c c cα µ =Σ  in the color space, where { , , }c c cα µ Σ  represent the weight, the 
mean color and the covariance matrix of the c th component. For pixels labeled as BG or FG, two sets 
of GMM parameters are learned. The variance of pixel x  associated with pixels labeled as l  is 
defined as: 

 ( | ) ( | , ), { , }.x cl x cl clc
V l I N I l BG FGα µ= Σ ∈∑                                                                             (5) 

where { , , }cl cl clα µ Σ  represent the weight, the mean color and the covariance matrix of the c th 
component learned from pixels labeled as class l . Then, the likelihood probability density function 
(PDF) of the color on a pixel p associated with label l  is represented as 
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The likelihood probability density function (PDF) of the texture on a pixel p associated with label 
l . ( ; )tex q qP I F l=  is the similarly defined as gmmP . 

Global Features. 
Regions form a powerful intermediate representation, but our end goal requires us to make pixel 

level decisions. The term will express the dependency between the local pixels and other pixels 
whose labels are inferred jointly. The patch scores should be projected onto pixels. For this purpose, 
we present a method to estimate probability associated with certain class of pixels rather than of 
regions. The estimated likelihood ( | )gb iP l x  of pixel ix  from related region likelihood regP  is defined 
as the weighted average of its corresponding region likelihood. 

Let 
1

( | ) ( | )
yN

gb i ik reg k
k

P l x P P l R
=

=∑ , /ik ik im
m

P w w= ∑  measure pixel i 's association rate with region 

k . Then the related potential is written as: 
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Pairwise Term. 
The first part is global pairwise reflected by PATCH. The distances between color and texture 

histograms are computed. Regions of the same material will often have similar texture histograms, 
regardless of differences in shading. When regions have both similar color and texture, they are likely 
to be same illumination pairs. The distance between two regions is taken into account. Features' 
difference between two regions/pixels is measured using the 2χ  distance of likelihood probability 
related, and it is defined as [12], 

2
2 ( ( ) ( ))( , ) .

( ) ( )
r i r i

i r i r i
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χ −
=

+∑                                                                                                     (8) 

where p  and q  denote two selected regions (pixels). Then, the distance is transformed into a log 
likelihood ratio. The distance between two regions  i  and j  is measured using color and texture 
histogram, 2

gmmχ  and 2
texχ ,  described as 2 2( , ) ( | ( , ) ( , ) | / )dis gmm texR i j exp i j i jχ χ s= − + .  Then the 

pairwise term between pixel  i  and j   is composed of two parts (2) (2) (2)( , ) ( , ) ( , )pair pixel patchE i j E i j E i j= + : 
(2)
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where NEB  is set of pixels in neighborhood, iP   and jP  denote the patches the pixels  i  and j  
belong to. S NEB−  is the set of super-pixels. The structural relationship and region distance is 
weighted. The results of pixels based (Graph cut), patch merging (MSRM), global based model 
(Patch formulation) and ours are listed. The goat in last row is typical failure case. 

Experiment  

To learn global weights for each feature in our model, we use the structural output support vector 
machine framework [13].  Unlike the schemes in [14] and [15],  we mainly focus on performance of 
classification on unary term of pixels without considering the pairwise relationship. To evaluate the 
discrimination and to measure the related importance of feature, the feature set that we formed for 
parameter learning is { (1) (0), (1) (0), (1) (0)}gmm gmm tex tex gb gbF P P P P P P= − − − . To enforce valid 
constraint on w , the energy of ground truth y  should be less than any segmentation mask y . That is 

1 1( , ) ( , ) 0T Tw E x y w E x y− > . We introduce formulation of margin rescale described in [13] to learn 
optimal parameters. 

Interactive Figure/Ground Segmentation.  
We test our method on 100 images from Berkeley segmentation database [14] and the Grab-Cut 

database [16]. The initial super-pixels is generated using Mean-shift  [3]. Our method is compared 
with graph cut modeled on pixel-level [16], MSRM [17] using region merging, and the patch based 
formulation of our method (Take a super-pixel as a node). In the implementation of patch based 
method, color and texture histogram is taken as feature for patch and pairwise term is calculated as 
distance between histogram. 

As shown in Fig.3, graph cut and MSRM will fail in the case when the pattern of pixels is 
disconnected, while our combining strategy generates a better performance. The numeral results are 
displayed in Table 3, pixel-level model combined with patch information is more flexible. It achieves 
highest TPF and TNF. 
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Fig. 3. Interaction segmentation result of typical hard examples. The initialized Green-super-pixels, 
red-seeds for object, blue-bk seeds. The results of Pixels based (Graph cut), Patch merging (MSRM), 
Global based Model (Patch formulation) and ours are listed.  

 
The Jaccard index is used to measure the overall performance and it is the ratio of the areas of the 

intersection between the segmented object and the ground truth, and of the union. 
TPFJI

TPF FNF FPF
=

+ +
. We can see that single pixel or patch based method may not be able to 

generate satisfied results. GC shows the highest FNF, it may suffer from over-segmentation easily. 
Patch-based method shows the highest FPF, it may suffer from short-cutting easily. Pixel-based 
miss-classify and patch-based will miss many details. 

Table 3. The TNF, TPF, FNF, FPF and Jaccard index results of different methods are reported. 

 
 
Automatic Figure/Ground Segmentation.  
We also explore the way for extending our framework to automatic segmentation. Since the most 

salient region is often associated with the most salient object, we select it as the initial region for the 
object segmentation. The bottom-up visual saliency model (GBVS) is used to locate and generate the 
most salient region of the image. The saliency map is generated by combining multi-scale image 
features including color, intensity and orientation into a single topographical saliency map [18].  A 
threshold operation with 0.8gvbsP >  is used to extract the salient object as initialization. 
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Fig. 4. Typical results in automatic framework. 

 
  Our method is compared with Mean-shift [3], SAS [19] (separated into 20/100 regions) which is 

designed to aggregate multi-layer super-pixels,  Graph-cuts with initialization [16], dense CRF (Fully 
connected CRF) [20] and  associative CRF [21] (in which PN model is used to ensure label 
consistency). As shown in Fig.4, our model generates the best result using the global features. 

Conclusion 

In this paper, we propose a novel method for combining information provided by super-pixels and 
pixels in a CRF model.  Different from other methods, the patch information is evaluated using the 
global appearance exhibited by each patch and the information is projected onto pixels.  Structural 
SVM is applied to learn the parameters in CRF model. Results show that our hybrid model can 
improve the accuracy. 
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