
The Design and Implementation of the Service Hosting and Delivery
Platform Based on Cloud

Yanqiao Sun1, a, Yanlei Shang2, b

1 The State Key Lab of Networking and Switching Beijing University of Posts and
Telecommunications, Beijing, 100876, China

2 The State Key Lab of Networking and Switching Beijing University of Posts and
Telecommunications, Beijing, 100876, China

aemail: yanqiao_sun@163.com, bemail: shangyl@bupt.edu.cn

Keywords: Service Hosting; Service Delivery; Service Catalog; Cloud Computing

Abstract. With the arrival of big data and Cloud computing era, it is a huge issue of how to
organize the application services. Organizations and companies usually have plenty of applications
range from web, mobile or middleware, etc. Because the quantity and diversity of services, they are
delivered through different platforms. The proposed Service Hosting and Delivering Platform is a
multi-application platform to deliver and consume the services in a loosely coupled manner, which
is hosted on OpenStack, thus solving the problem in cross-platform service delivery. In addition, it
supports the service lifecycle management and we also provide user-friendly web interfaces. From
the end-users’ perspective, they can consume the services on the cloud with the push of a button
expediently.

Introduction
Along with the development of science and technology, especially the development of distribute

computing, and virtualization, the concept of cloud computing becomes more and more popular.
Cloud computing is a method of sharing infrastructure which can manage plenty of physical
resources uniformly [1]. Cloud computing [2] is a significant trend with the potential to increase
agility and lower costs.

Meanwhile, there is a great increase in the quantity of applications as well as variety. Enterprises
usually need to deliver various applications across platforms, which can include such things as web
applications, mobile apps, even system middleware services. In general, we deliver web
applications, mobile apps and middleware applications through portal sites, app store or market
place, and PAAS (Platform as a Service) [3] respectively. It can be time-consuming.

However, to date, almost all the solutions to deliver services only support a single type of
application. For example, app store [4] is a market place only for mac apps; Google play [5] serves
as a store for Android operating system; Salesforce [6] only supports CRM (Customer relationship
management) products.

In this paper, we proposed a Service Hosting and Delivery Platform. For higher resource
utilizing efficiency, we implemented it based on OpenStack [7]. All the resources and services are
hosted on the cloud. In addition, it support delivering and consuming multiple application services.

Architecture of Service Hosting and Delivery Platform
The Service Hosting and Delivery Platform mentioned in this paper adopts B/S architecture

which is shown in Figure 1. Exposing RBAC (Role Based Access Control), Service Catalog and
Lifecycle management functions through REST API, it’s quite easy to use and integrate with other
modules.

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015)

© 2016. The authors - Published by Atlantis Press 682

Fig.1. The Architecture of the Service Hosting and Delivery Platform

The bottom layer is mainly responsible to realize the unification of physical resources allocation
and management through OpenStack, which is a cloud operating system that controls large pools of
compute, storage, and networking resources. It supports various virtualization technologies as its
Hypervisor, such as KVM, Xen, Hyper-V, VMware, and so on. In addition, OpenStack has several
core components to manage different resources and services. For example, Nova manages the
compute resources, Neutron manages the virtual networks, Swift is the Object storage service, heat
is the main project in the Open Stack Orchestration program and Keystone is the service which is
responsible for authentication.

The upper layer is our Service Hosting and Delivery Platform based on OpenStack. The Murano
Project introduces an application catalog to OpenStack, enabling application developers and cloud
administrators to publish various cloud-ready applications in a categorized catalog [8]. It gives a
solution to publish applications and services, deployment rules and requirements included. Then
WSO2 App Manager is a solution to provide controlled access to several applications for many
users in an organization [9], which supports publishing Web apps as well as iOS, Android, Hybrid
and Web types of mobile apps with app versioning and lifecycle management. We integrate
OpenStack Murano and WSO2 App Manager to fulfill our platform. With Murano, we can offer
any types of middleware applications, such as LoadBalancer, Tomcat, MySQL, etc. With WSO2
App Manager, we can support multiple web and mobile applications as our services. The both of
them provide a complete REST API to help users operate resources and services conveniently. The
proposed platform realized three main modules: Role Based Access Control (RBAC) module,
Service Catalog Module and Lifecycle Management module. The RBAC module is responsible for
managing users and their authorization levels. The service end-user can only access services tied to
his user-role and publicly available. With the help of the module, we can make centralized control
over many users and various applications. Service Catalog module, an app store where users can
create, publish, browse, choose, pick and request apps for them to do their jobs more efficiently that
you make available to them. Then the goal of the Lifecycle management module is to manage
service lifecycle from cradle to grave: create, publish, subscribe, delete, retire, etc.

The Service Hosting and Delivery Platform proposed in this paper supports publishing and
consuming middleware services, web services as well as iOS, Android, Hybrid and Web types of
mobile apps. To the one whose customized requirement is not high, he can use the web and mobile
services directly. On the contrary, he can develop a new application using the middleware services,
such as Tomcat, MySQL, PHP, etc.

The platform provides users a rich service catalog including catalog management. From the
application creator’s perspective, the platform will support creating almost all types of services,

683

thus making him need not to cross platforms. From the publisher’s perspective, it provides a way to
publish applications and services, including access rules and requirements, suggested configuration,
etc. From the subscriber’s perspective, it is able to access all the services in a centralized single
location just like an application market.

Implementation of Service Hosting and Delivery Platform
The platform using B/S architecture described in the last section is implemented by the several

modules: RBAC Module, Service Catalog Module and Lifecycle Management Module. We will
make a brief introduction of them in the following.

Role Based Control Access Module.
The module provides the ability to manage users and roles in the system. Users are assigned to

one or more roles which determine the user’s access or privileges to system resources and the
actions he can perform. The Service Hosting and Delivery Platform involves three major roles:
Creator, Publisher and Subscriber. All the user roles in this system are shown in Table 1.

Tab. 1. User Roles Summary
Role Description

Administrator Have full power over the system and can do absolutely everything.
Creator Create apps and to submit them for reviewing before they are published

into the Application Catalog.
Publisher Manage and maintain the lifecycle of an application by

approving/rejecting, publishing/unpublishing, and deleting them.
Subscriber Have access permission of the Application Catalog to subscribe to

published applications, view the documentation.
Users with Administrator’s role can create more Administrators, add or remove existing users

and change the user roles. Then it can be written in the database. We use MySQL instead. They
have complete control over users as well as services. Nothing is off-limits for them, including
deleting the entire system. By default, the admin user is assigned with Creator, Publisher and
Subscriber roles. Therefore, considering security requirements, we have only one administrator in
our system and will give usual users the minimal set of privileges required to ensure a system of
least privilege.

Service Catalog Module.
The main function of the module is to provide end-user to browse, search and consume

application services. Meanwhile, the service can be various. In addition, it supports complete
service management, such as creating, publishing and managing all aspects of an application service.
Then, we will describe its main functions respectively.

Multiple services.
The platform is aimed at building a service eco-system, which supports these three types of

service.
1) System Middleware Service
The services may be a LoadBalancer, an Apache Tomcat server, a MySQL server, REDIS,

Kubernetes or a cluster composed with these application services. It can offer user an environment
with some functionality with auto-scaling and self-healing.

2) Web Application Service
Any type of application works in the browser can be imported in the system.
3) Mobile Application Service
The platform supports iOS, Android, Hybrid and Web types of mobile apps. They all can be

uploaded, subscribe, and installed or browsed on your device.
Application Service Introduction Process.
The multiple services described above can be introduced into the Service Catalog. The process of

an application service introduction consists of three steps:
1) Upload application service:

684

Creator can add new application service and submit a review request.
2) Review and publish the uploaded service Module:
Publisher will receive the request and then evaluate the service to decide whether approval or

reject the request. Only when the request is approval and publisher has published the service, can it
be browsed in the service catalog.

3) Subscribe service Module:
Subscriber can use service catalog to find services quickly and easily. The services are imported

grouped by categories for easier navigation. It can be subscribed as self-application.
Service Lifecycle Management.
Service Lifecycle Management main focuses on exposing the actual IT functionality, which is

one or more aggregated resources exposed as a single unit of management. We call the REST API
of Murano and WSO2 App manager to manage throughout its lifecycle from cradle to grave
through managing the application service. In this context, the term resources refer to any type of
application service that can be encountered in a datacenter environment. This can include such
things as servers, storage, networks, operating systems (OSs), applications, or middleware. The
service lifecycle is shown in Figure 2.

Fig.2. Lifecycle of an application service

For all the functions, we have implemented user-friendly web interfaces for users to manage and
consume services.

Experiments
After setting up a cloud computing environment based on OpenStack and deploying our system

into the Tomcat container, we have conducted a series of experiments. We evaluate it in three
aspects: RBAC Module, Service Catalog Module and Lifecycle Management Module. Our goal is
to validate that the system can work well and it is quite stable.

Experiment of RBAC Module.
Users with Administrator’s role can create more Administrators, add or remove the existing users

and change the user roles. Therefore, we login the system with admin user and add three users first,
the user list is shown in Figure 3.

685

Fig.3. Users and roles

In this part, we can only simply test the user management. It is the basis of the entire system. So
we create users first, and the functions will be shown with the following experiments.

Experiment of Service Catalog module.
The main purpose of this part of test is to verify the Service Catalog module in three user roles:

creator, publisher and subscriber. To clarify, different roles have different permissions. As we have
mentioned above, creator is responsible to upload an application which can be a Murano package,
web URL, Android, iOS or some hybrid mobile apps as a service; publisher need to approval or
reject the uploaded service through some evaluations; subscriber can subscribe the service and
consume it expediently. We use the users created in above step and take web application as an
example, the process is shown in Figure 4 (a), (b) and (c).

Creator

Create new application and submit for review

(a)

Publisher

Approval or reject the new created application and decide to publish it or not

(b)

Subscriber

Subscribe the new published application and consume it

(c)

Fig. 4. The Full Process of service Introduction
From the test result, we can see it works fine. In addition, when we send a request to introduce

686

and consume a middleware application and mobile apps, we also get the similar information as
above. Hence we can make sure that the Service Catalog Module is working smoothly.

Experiment of Lifecycle Management module.
The main purpose of this experiment is to test the Service Lifecycle Management Module. Only

publisher can access the module. He can reject, approval, publish, unpublish and terminate the
service. We have done some tests based on the above steps, it shows that with the Lifecycle
Management Module, all resources associating the services can be managed uniformly by publisher.
Of course, if a middleware application is no longer needed or the reservation for its resources
expires, it will be deleted by publisher. And all resources that were allocated by the middleware
service instance are returned to their respective pools such that they can then be reused by other
cloud service instances.

Conclusion
With the rise of the Cloud Computing and big data, the method to provide network services and

the demands for services has changed greatly. We usually want to provide services easily instead of
crossing different platforms. And more often, we need to figure out the necessary applications and
services in the vast amounts of data. Under this background, we design and implement a Service
Hosting and Delivery System hosted on OpenStack for higher resource utilizing efficiency. The
system supports centralized control access and lifecycle management of services, which provides a
new solution to deliver and consume services. It should greatly facilitate the management and lessen
the burden of IT and developers. Maybe it can change the way on the use of services.

Acknowledgement
This research is supported by the National Key Technology Research and Development Program

of China (Grant No. 2012BAH94F02); National Natural Science Foundation of China under Grant
No. 61132001); National High-tech R&D Program of China (863 Program) under Grant No.
2013AA102301; Project of New Generation Broad band Wireless Network under Grant No.
2012ZX03005008-001.

References

[1] Cloud computing. https://en.wikipedia.org/wiki/Cloud_computing

[2] Michael R. Head, Anca Sailer, Hidayatullah Shaikh, Mahesh Viswanathan “Taking IT
Management Services to a Cloud” 2009

[3] https://en.wikipedia.org/wiki/Platform_as_a_service

[4] https://en.wikipedia.org/wiki/App_store

[5] https://en.wikipedia.org/wiki/Google_Play

[6] https://en.wikipedia.org/wiki/Salesforce.com

[7] http://www.OpenStack.org/

[8] https://wiki.OpenStack.org/wiki/Murano

[9] http://wso2.com/products/app-manager

687

https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/App_store
https://en.wikipedia.org/wiki/Google_Play
https://en.wikipedia.org/wiki/Salesforce.com
http://www.openstack.org/
http://wso2.com/products/app-manager

	Introduction
	Architecture of Service Hosting and Delivery Platform
	Implementation of Service Hosting and Delivery Platform
	Role Based Control Access Module.
	Service Catalog Module.
	Multiple services.
	Application Service Introduction Process.
	Service Lifecycle Management.

	Experiments
	Experiment of RBAC Module.
	Experiment of Service Catalog module.
	Experiment of Lifecycle Management module.

	Conclusion
	Acknowledgement
	References

