
 

 An Adaptive Texture Synthesis Algorithm  
Xuewen Ding1, a, Subramaniam Ganesan2, b, Jing Chen3, c 

1School of Electronic Information Engineering, Tianjin University of Technology and Education, 
Tianjin, China，300222 

2Department of Electrical and Computer Engineering, Oakland University, Rochester, Michigan, 
USA, 48309-4478 

3Tianjin Tianda Qiushi Electirc Power High Technology Co., Ltd., Tianjin, China，300384 
adingxw1@126.com, bganesan@oakland.edu, cchenjing7777@163.com 

Keywords: Texture Synthesis, Adaptive texture synthesis, global structure, low computational cost 

Abstract. Patch-based texture synthesis has proven to produce reasonable results for a wide variety 
of texture classes. In this paper, an effective adaptive texture synthesis method is proposed based on 
the popular Image Quilting and the general framework of Hybrid Texture Synthesis (HTS) algorithm. 
Our algorithm uses the Fourier domain for finding the best match candidate patches, and adaptively 
splits them so as to use as large as possible patches to preserve global structure within the input 
texture. Finally, the newly chosen patch is adaptively composited into the synthesized result to 
remove seams and discontinuities in the overlap region. Results from our implementation show that 
our algorithm produces high-quality texture at low computational cost. Our algorithm is also flexible 
to obtain the trade-off between visible quality and speed. 

Introduction 
Texture synthesis from example is the process that an input texture chip is taken and used as a 

basis to generate an arbitrary quantity of ’similar’ texture. Copying parts (pixels or patches) from the 
input and pasting them together as an output image is one way texture synthesis can be accomplished. 
In this paper, an adaptive texture synthesis method base on the popular Image Quilting algorithm [3] 
and this general framework of Hybrid Texture Synthesis is proposed [1][2]. The proposed algorithm 
improves Image Quilting and HTS in several aspects to overcome some of their shortcomings. 

Previous work 
Texture synthesis approaches most relevant to ours can be classified into two major braches of 

research with regards to non-parametric synthesis from example. 
One set of methods are pixel-based, where a texture is synthesized by repeatedly matching the 

neighborhood around the target pixel in the synthesis result with the input texture [4][5]. The main 
problem with pixel-based algorithms is speed owning to initially an exhaustive process. These 
algorithms also tend to lose global features within the input texture for using only a small 
neighborhood round single pixel.  

Patch-based synthesis algorithms copy whole patches using an overlap region from the source 
texture and paste them into the synthesized result [1][3][6][7]. If the chosen patch size is large enough 
to encompass the global features, implementations of these methods tend to preserve features in the 
image. While solving the issues with the lack of speed common to pixel-based methods, traditional 
Patch-based texture synthesis algorithms introduced their own set of problems like discontinuities 
along the seams of the patches.  

Some methods which can remove the seams on the boundaries of patches have been implemented 
[1][2][3]. Efros and Freeman’s Image Quilting algorithm aligns adjacent patch boundaries, 
constrained by overlap, and then performs a minimum-error-boundary-cut (MEBC) within the 
overlap region to reduce overlap artifacts [1]. In so doing, the MEBC helps to preserve localized 
high-frequency feature such as edges within the source texture. HTS method proposed by Nealen and 

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015) 

© 2016. The authors - Published by Atlantis Press 704



 

Alexa uses patch sampling for initial synthesis, and re-synthesizing individual pixels in a carefully 
calculated sequence by a post-process procedure[2][3]. Despite its simplicity, Image Quilting works 
well, producing synthesis results that are equal or better than the Efros & Leung family of algorithms 
however at a fraction of the computational cost [1]. But Image Quilting still has a tendency to 
generate abrupt color changes, termed boundary mismatch [7].  The HTS method does a good job of 
eliminating overlap artifacts between adjacent patches, but it suffer from a heavy computational 
expense for the overlap re-synthesis stages [2][3].  

Adaptive Texture Synthesis Algorithm 
The complete stages of the texture synthesis Algorithm proposed in this paper are as follows: 
1) Go through the image to be synthesized in raster scan order in steps of one patch. 
2) For every location, search the input texture to find the best patch, constrained by overlap with 

the existing synthesis result. 
3) Split the patch adaptively so as to use as large as possible patches while staying within a 

user-defined error tolerance max∆ ( [0,1]max∆ ∈ ) for the mismatch in the overlap region. 
4) Paste the block onto the synthesized texture by using Image Quilting or HTS.  The overlap error 

is used to make choice. If overlap error of the newly chosen block is bigger than k ( [0,1]k∈ ) times

max∆ , HTS with per pixel re-synthesis in the overlap is used. Otherwise Image Quilting is used to 
stitch together the new patch and the synthesized result. Repeat. 

In all of our experiments the width of the overlap edge (on one side) was 1/5 of the size of the block. 
Below describes in detail Steps from 2) to 4).  

Best patch Searching 
In algorithm step i, a patch is selected from an example texture T which best fits the target region in 

the existing result. This selection/search procedure is constrained by the overlap error between the 
newly chosen block and the intermediate result. 

The error image is computed by the use of the image mask Ii and binary support function Ji (Fig. 1). 
Firstly, the current block is simply grown by the pixel overlap, and then the grown region in the 
current result is checked to search the already synthesized pixels: if it is a valid pixel in the current 
location, the corresponding pixel of Ji (initially all 0’s) is set to 1 and the color value from the 
synthesized result is stored in Ii.   

Given the input texture T, after obtaining Ii and Ji, the weighted error [0,1]i∆ ∈  is computed 
between the mask Ii and a circular shift x0 of T as 

2
,

1( ) ( ) ( ( ) ( ))i i c i c c
ci

E J W I T
κ

 = − ∑∑0 0
x

x x x x+x                                                                      (1) 

The error image Ei stores i∆  for each x0. Where ( )i iJκ =∑X
x , { }, ,c R G B=  (the set of color 

channels in RGB space) and 1cc
W =∑ . Obviously ( ) ( ) ( )i i iJ I I=x x x , and define the cross 

correlation between two images (functions) f g◊ as ( )( ) ( ) ( )f g f g◊ =∑0 0x
x x x+x , Equation 1 is 

computed as 
2 2

, ,
1( ) ( ) 2( )( ) ( ( ))( )i c i c i c c i c

ci

E W I I T J T
κ

 = − ◊ + ◊  
∑ ∑0 0 0

x
x x x x                                                 (2) 

The correlation f g◊  between two functions can be computed in fourier space as
1( ( ) ( ))f g F F f F g−◊ = ∗ . In the implementation, the fourier transform for T is pre-computed and 

only the fourier transforms of Ii and Ji need be recomputed for each new block. 
Based on the greater sensitivity of the human visual system to changes in luminance than changes 

in hue or saturation, { }, , 0.299,0.587,0.114R G BW = , which is analogous to the Y component 
(luminance) of the YIQ color model [8]. 

705



 

                                                       
(a) Input texture T      (b)  Binary support function Ji     (c) Image mask Ii                (d)   Error image Ei 

Fig.1. Error image computing in Best Patch Searching 
 

 Adaptive Patch Sampling 

After Pi  chosen from the input texture T in algorithm step i, if the weighted error i∆ between the 
overlapping pixels of Pi and the already synthesized result exceeds a user-defined error tolerance

max∆ , the current patch Pi will be subdivided into four small congruent blocks and recurse. In our 
implementation, the patch Pi initially is quadrilateral patch with size 2n by 2m ( ,n m∈ ). The 
adaptive sampling split is taken as example shown in Fig.2. For recursive calls, the pixel overlap is 
halved at every split and limited to a minimal overlap width value of 3. 

The value of the user-defined error tolerance max∆  determines directly the amount of block splits. 
If setting max∆ to 0 leads to always split, it is equal to a traditional per-pixel synthesis method. 
Whereas, setting max∆  to 1 will not split, it is like the typical patch-based methods. Less extreme 
values used for max∆ allows the synthesis trades structural inconsistencies for detail artifacts. In our 
experiment, max∆ usually is set value with 0.1max∆ ≤ . The global structure preserving and artifacts 
removing will be obtained by the following block compositing stage.   

                 

                                  
Fig.2. Adaptive patch sampling. Shades of gray represent already synthesized patches, the hatched 

areas are the overlap regions used for best patch search. 

Block Compositing 
After a patch is picked from T, the newly chosen patch will be adaptively composited into the 

synthesized result by using the compositing scheme in Image Quilting or HTS. If the overlap error of 
the current block is smaller than k ( [0,1]k∈ ) times max∆ , Image Quilting is used for compositing. The 
minimum cost path along the overlap region will be computed for stitching directly together the new 
patch and the synthesized result. 

When the overlap error of the newly chosen block is bigger than k times max∆ , there has a big 
tendency to produce boundary mismatch if Image quilting is still used for compositing. So the overlap 
re-synthesis strategy in HTS will be applied. In the overlap regions, a pixel error is firstly computed 
for each pixel and the pixel with an error exceeding a user defined pixel error tolerance maxδ  will be 
marked as invalid. To ensure sufficient valid neighborhoods for these mismatched pixels, a traversal 
order for them is calculated by using morphological dilation of the valid regions. Then each invalid 
pixel is re-synthesized individually in the order given by the pixel traversal map. Finally, the newly 

 (d) Final sampling grid (c) △i＜△max 
stop splitting 

 

(b) △i＞△max 
patch splitting 

(a) Synthesizingwhite 
patch Pi 

706



 

chosen block with re-synthesized overlap is copied to the target region in the already synthesized 
result.  

The number k allows a trade-off between quality and speed. The synthesis quality for various 
settings of k is shown in Table 1. Bigger values for k lead to faster synthesis at the potential cost of 
visual quality. Note that setting k=1 results in an approach which can be called the adaptive Image 
Quilting. The adaptive Image Quilting can get better visual effect than ordinary Image Quilting, but 
the boundary mismatching can’t vanish. Whereas setting k=0 results in entire HTS.  

Table 1. Four 192×192 synthesis results on an i5-4210M with varying values for k, using Fig.1 (a) 
green scale 64×64 as input (Initial patch size of 32×32, 0.02maxδ =  and 0.04max∆ = ). 

k=0.2 k=0.4 k=0.6 k=0.8 
 

 
Synth time:65 sec. 

 

 

 
Synth time:61sec. 

 

 

 
Synth time: 46 sec. 

 

 

 
Synth time:25 sec. 

 

Experimental Results 
The algorithm is compared to the original Image Quilting and HTS algorithm using the images 

provided in[1][2][3]. We were especially interested in comparing the synthesis results of Wei/Levoy 
green scales and Liang et al.’s natural stone wall (Table 2). Both of them display a great amount of 
structure and anisotropy, which generally challenge existing synthesis algorithms. Especially the 
benchmark green scales texture which is compared in most other papers as well. In addition, we also 
used other complex textures that are a little hard to synthesize with some existing algorithms. 

Table 2 shows some synthesis results/timings using green scales texture and natural stone wall 
textures based on our Matlab implementation. The results in each row are of size 256×256 with 
varying input texture sizes from 64×64 to 200×200. In column 2 of Table 1, we see the results 
generated by Image Quilting. Although these results preserve global structure and similarity, the 
blurring and boundary mismatch artifacts are noticeable, thus revealing the regular patch grid. The 
biggest advantage of Image Quilting is simplicity and fast-speed, with the un-optimized MATLAB 
code used to generate these results running for less than 10 seconds. Column 3 demonstrates that HTS 
usually obtain the compelling results but the longest synthesis time because of the cost of additional 
computational effort, especially when many pixels must be re-synthesized. We produced the column 
4 by using the adaptive algorithm proposed in this paper and setting k equal to a medium value 0.5. 
Although our adaptive algorithm does not entirely nullify the existence of overlap artifacts, it can 
reduce their overall frequency like HTS, thereby eliminating visible patch boundaries. We found the 
results of our algorithm are very close to the production of HTS, but even preserve the global 
structure better than HTS in the result of stone wall texture because of using Image Quilting for some 
patch synthesis. The consuming time of our adaptive algorithm is much less than performing of HTS 
for both of these two textures and it will reduce continuously when increasing the value of k. The 
results using HTS and our adaptive algorithm are generated by setting max∆  to the same value, with 

0.04max∆ = for green scales and 0.03max∆ = for stone wall texture. 
More comparing results are shown in Table 3, with their respective parameters setting. Our 

algorithm generally produces synthesis results close to HTS, however, better than Image Quilting. Its 
synthesis time always falls in between the cost Image Quilting and HTS.  

 

707



 

Table 2. Results and times on an i5-4210M using green scales and stone wall texture. Each result 
is 256×256(Initial patch size of 32×32). 

input Image Quilting HTS Our Algorithm 
k=0.5 

 
 

 
Green scales 

64×64 
0.02maxδ =  
0.04max∆ =  

 

 
Synth time:5 sec. 

 

 

 
Synth time:179 sec. 

 

 

 
Synth time:125 sec. 

 
 

 
Stone wall 
200×200 

0.02maxδ =  
0.03max∆ =  

 

 
 

Synth time:7sec. 
 

 

 
 

Synth time:81 sec. 
 

 

 
 

Synth time:52 sec. 
 

Conclusions 
In this paper we proposed an adaptive texture synthesis method based on Image Quilting and HTS. 

Our adaptive texture synthesis works for any block layout or shape. The results of our algorithm are 
of better quality comparing to Image Quilting, for limiting the overlap error by splitting adaptively 
the blocks and searching the best pixel to replace invalid pixels in the overlap region. It is 
significantly faster than HTS for stitching directly the new block to the synthesized result and has 
comparable synthesis quality as HTS. Our adaptive texture synthesis is also flexible to obtain the 
trade-off between visible quality and speed by adjusting the parameter k as mentioned in Section 2.  

Acknowledgements 
We would like to thank Andrew Nealen and Marc Alexa for making their HTS code freely 

available for research purposes. This framework provided an excellent background for the rapid 
prototyping of our method. 

This research work is supported by the National Natural Science Foundation of China (No. 
61271412), by Tianjin Science and Technology plan project (No.14ZXCXGX00594), by Tianjin 
City High School Science & Technology Fund Planning Project (No.20130711 and No.20110710), 
by the Foundation of Tianjin University of Technology and Education  ( No.RC14-46 and 
No.KJY12-04). 

708



 

References 
[1] Alexei A. Efros and William T. Freeman. Image quilting for texture synthesis and transfer. In 
Proceedings of the 28th annual conference on Computer Graphics and Interactive techniques, 2001. 
341-346. 

[2] Andrew Nealen and Marc Alexa. Fast and high quality overlap repair for patch-based texture 
synthesis. In CGI ’04: Proceedings of the Computer Graphics International (CGI’04), 2004. 582-585. 

[3] Andrew Nealen and Marc Alexa. Hybrid texture synthesis. In Proceedings of the 14th 
Eurographics workshop on Rendering, 2003. 97-105. 

[4] Seunghyup Shin, Tomoyuki Nishita and Sung Yong Shin. On pixel-based texture synthesis by 
non-parametric sampling. Computers & Graphics, 2006:30 (4):767-778. 

[5] Steve Zelinka and Michael Garland. Jump map-based interactive texture synthesis. ACM Trans. 
Graph., 2004:23(4):930-962. 

[6] Krzysztof Ślot, Łukasz Kornatowski and Piotr Dȩbiec. Fast texture synthesis with cellular neural 
network-based patch stitching. nternational Journal of Circuit Theory and Applications, 2012:40(12): 
1265-1275. 

[7] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-Yeung Shum. Real-time texture 
synthesis by patch-based sampling. In ACM Transactions on Grapics (TOG), 2001 (20) 127-150. 

[8] J.D. Foley, A. van Dam, S.K. Feiner and J.F. Hughes Computer Graphics. Principles and Practice. 
Addison Wesley, 1990. 

Table 3. Results and times on an i5-4210M using Mosaic and Mats texture. Each result is 
256×256(Initial patch size of 32×32). 

input Image Quilting HTS Our Algorithm 
k=0.5 

 

 
Mosaic 

200×200 
0.02maxδ =  
0.02max∆ =  

 
Synth time:7 sec. 

 

 
Synth time:172 sec. 

 

 
Synth time:145 sec. 

 

 

 
Mats 

200×200 
0.02maxδ =  
0.03max∆ =  

 
 

Synth time:7sec. 
 

 
 

Synth time:35 sec. 
 

 
 

Synth time:27 sec. 
 

 

709




