

An Approach for Protecting the OpenFlow Switch from the Saturation
Attack

Mingxin Wang1,a, Huachun Zhou2,b, Jia Chen3,c, Bo Tong4,d

1,2,3,4National Laboratory of Next Generation Internet Interconnection Devices, School of Electronic
and Information Engineering Beijing Jiaotong University, Beijing 100044, China

aemail: 14111007@bjtu.edu.cn, bemail: hchzhou@bjtu.edu.cn, cemail: chenjia@bjtu.edu.cn, demail:
 14120125@bjtu.edu.cn

Keywords: SDN, security, OpenFlow, cache, threshold

Abstract. Security is always a serious issue influencing the development of Software-Defined
Network (SDN). The central control mechanism makes the SDN controller a bottleneck of the
network which is vulnerable to network saturation attack. In this paper, we propose an approach to
defense this kind attack. Firstly, we add a miss matched packet cache module in the OpenFlow
switch which can temporarily cache the packets that don’t match in the flow table. Besides, we
apply the mechanism of separating the header and payload of packets in the cache queue once the
switch detects the volume of cache queue exceeding the threshold of the cache size. In addition, the
switch can classify the packets headers and send it in an alert message to the SDN controller for
further processing. At last in the paper, we evaluate the effort of our proposed approach in Mininet.
With our approach, the SDN network can effectively defend the network saturation attack.

I. Introduction
The Software Defined Networking (SDN)[1] is a disruptive innovation in the networking

industry which decouples the control plane from the data plane. SDN supports fine-grained network
management policies so that the network configuration and management can be handled by the
centralized controller which facilitates the upgrade of functionality and debugging. OpenFlow[2] is
a standardized protocol which defines the southband interface of SDN. OpenFlow promotes the
programmability of the network making it more flexible and efficient.

However, security is a serious issue which influences the development of SDN. Current
OpenFlow protocol adopts a reactive caching mechanism where whenever a switch does not find a
matching rule for the flow of one of its incoming packets, the packets will be send to the controller
asking for the flow rules and the other packets belongs to the same flow will be stored temporarily
in the switch’s buffer. This mechanism brings two main drawbacks. Firstly, in the SDN network,
controller becomes the single point which is vulnerable to several of attacks. A large number of
table miss messages from the attackers may exceed the processing capabilities of the controller
which will cause a DoS attack so that the controller cannot process legal packets. Secondly, the
reactive caching mechanism also makes switches vulnerable to a DoS attack where malicious users
flood the switch with large payload packets that belong to different flows. These malicious packets
are likely to be no match with the flow tables in the switch which require sending queries to the
controller. The switch has to store these large payload packets in the buffer for forwarding that will
easily fill up the buffer. As a result, some new coming legitimate packets will be dropped. In this
paper, we mainly focus on solving the two issues above.

We add a cache module which stores the miss match packets in the OpenFlow switch. We
implement a threshold based packet header and payload decoupled mechanism in this cache module.
When the threshold has been reached, the switch will send all these miss match packets to the cache
module and decouple all packets’ headers and their payloads. Then the module will arrange the
packets into five tuples flows and send them to the controller as an alert message for deep
inspection. The application we develop in the controller will analyze the flows and install defense
flows in the corresponding switches to restrict the attackers. In this way, the buffer queue can be

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015)

© 2016. The authors - Published by Atlantis Press 729

mailto:14111007@bjtu.edu.cn
mailto:hchzhou@bjtu.edu.cn
mailto:chenjia@bjtu.edu.cn
mailto:14120125@bjtu.edu.cn

reduced significantly and the switch will be more robust to the saturation attack. In addition, we
verify the effort of our approach in the Mininet environment.

The paper is organized as follows: Section 2 mainly introduces the state of the art of SDN
network security threat and the related works on relieving the influence of the attacks. Section 3
presents the design of our approach and gives the implementation method. In section 4, we analyze
the performance of our approach and give the experiment result to prove. Section 5 gives the
conclusion of our work.

II. Related Work
SDN security has always been a hot topic since SDN concept emerges because that SDN is a

double-aged sword for network security. The new features of the SDN paradigm bring great benefits
to the networking security. [3] lists three core characteristics that differentiate SDN networks from
traditional networks from a security perspective, global network view, self-healing mechanism,
increased control capabilities. [4] combines SDN and sFlow[5] monitor to defend the DRDoS attack.
It decouples the controlling function from monitoring to minimize the cost of controller. [6]
proposes an approach to quickly detect DDoS attack in the network. It takes advantage of the
central control concept of SDN and uses entropy to identify the attack in the early time. [7]
proposes a lightweight DDoS flooding attack detection approach using OpenFlow which uses
neural network technique to classify the anomaly traffic. [8] proposes a SDN based malware
detection system in mobile network which monitors the network traffic to detect mobile malwares
and cooperates with SDN controller installing rules to implement access control.

However, the security of SDN or OpenFlow itself remains to be addressed. Some serious
security issues are specific to SDN. [9] lists 7 threat vectors in SDN which has to be tackled.
Among these, the attacks on control plane communications, the attacks on controllers and the lack
of mechanisms to ensure trust between the controller and management applications are specific to
SDN. These vulnerabilities may bring serious security disasters to the SDN network. Some work
has been done to tackle the SDN security issues. AvantGuard [10] is proposed to solve the SDN
network saturation attack. AvantGuard implements a TCP SYN proxy as a module in the SDN
switch so that it can only serve the flows which finish the TCP handshake. AvantGuard can alleviate
TCP saturation attack effectively which however, has some limitation for other protocols.
FloodGuard [11] is another approach which is also proposed to defend saturation attack in both
control plane and data plane. FloodGuard adopts proactive flow rules to preserve network policy
enforcement and packet migration mechanism to protect the controller from being overloaded.
However, it cannot detect who the attacker is and stop it from attacking.

III. Design and Implementation
Our approach is proposed to solve the security of SDN network itself. We mainly focus on SDN

network saturation attack on both control plane and data plane. We will discuss the method in the
following parts.
A. Overview of the System

Figure 1 shows the architecture of our proposed system. Our work mainly includes two parts.
Firstly, we add a cache module to restore the miss match packets in the buffer queue. Then we
propose a threshold based packet header and payload decoupled mechanism which is implemented
in the proposed module in order to defend the buffer saturation DoS attack. The module will
constantly monitor the buffer state. Once the threshold is exceeded, the decoupling process will be
triggered and an alert will be send to the controller for further process. Secondly, we develop a
security analysis application in the controller to analyze the alert message from the data plane. Once
the attackers are confirmed, the corresponding flow rules will be installed to prevent the attack.

730

Buffer

Flow Table

Cache

Data Plane

Security Alert
Agent

Control Plane

Controller Infrastructure

Traffic analysis
APP

Applications

Pakcet

OpenFlow
Secure Channel

Alert Socket
Channel

Fig. 1. Overview of the System Architecture

B. Packet’s header and payload decoupled mechanism
In the common OpenFlow switch, there is a flow table which is used to store the forwarding

rules indicating an action about how to handle the incoming flows. If there comes a new flow that is
unmatched in flow table, the switch will forward the packet or packet header of the flow to the
controller for inquiring. As OpenFlow protocol adopts the reactive caching mechanism, the switch
is vulnerable to the saturation attack where the miss-matched flow’s packets will be cached
temporarily on the switch’s buffer. The malicious users can flood the switch with large payloads
packets which belong to different flows. The limited buffer of the switch can be filled up quickly.

To address this issue, we proposed a mechanism which decouples the packet payload from the
header. This procedure is parallel with the process of common OpenFlow switch. Once the buffer
queue size exceeds the threshold T, the decoupling modules start to run. At the same time, switch
still forwards the miss match packet header to the controller querying for the flow rules. After the
first step of decoupling, the switch will classify the packets header according to 5 tuples including
source IP address, destination IP address, source port number, destination port number and protocol
type. In addition, the packets’ statistics number of each flow will be recorded. The information will
be send to the controller as an alert message through an external channel defined by us. The security
application in the controller will further process the alert message.

The existing technique such as entropy value[6] or neural network[7] could analyze the statistics
characters of the uploaded alert messages. Once the attack behavior is detected, the controller can
immediately install the rules to restrict the attacker. The whole procedure of our design is shown in
Figure 2.

Match in the flow
table? no

Migrate the
packets in cache
module waiting
for the action

Execute the actionyes

Incoming
packet

Forward packet to
the controller

Decouple the packets header
from the payload and send alert

message to the controller

Does cache volume
exceed the threshold

no

yes

Install the flow
rules on the

switch

Cache the packets
in the buffer

Analyze traffic status
according to the alert

message

Fig. 2. The flow diagram of the packet processing

731

C. The security analysis application in the controller
In Figure 1, security alert agent is used for listening the data plane alert continuously. Once the

agent receives an alert message, it will pass it to the traffic analysis application for processing. We
develop this APP in the controller which can calculate each tuple’s entropy value of the flows.
Entropy can reflect the traffic variation of the data plane, which further can identify the attack mode.
Lots of researches have proven that some attributes such as IP address, port number and type of
protocol, which have a strong character of autocorrelation and heavy-tailed property[12] that can be
used to judge whether the traffic is abnormal. So we can utilize entropy to quantize each attribute of
the traffic flow.

The traffic analysis application we develop is entropy based which can analyze the alert message.
The APP is SVM algorithm based which can train the normal traffic and attack traffic model in
advance. When the alert message arrives, the traffic analysis application will transfer the attributes
in the message into entropy value to reflect the traffic condition of the switch.

IV. Performance Analysis and Experiment
A. Performance Analysis

In this section, we mainly analyze the performance of the proposed approach. We assume that the
packets arrive at the switch according to a Poisson process and the arrival rate is under the
normal situation while the service time of the switch is exponential with the parameter of . The
mean service time for processing one miss matched packet is Q. We assume the mean value of the
packet length is l. As the length of the buffer is L, we can get that the buffer can store packets

where under the normal traffic situation. Once the buffer is filled up, the switch will drop
the new incoming packets. So the model of the switch buffer is M/M/1/N. When the attack starts,
the arrival rate of the packet turns into while the mean value of the packet length turns into .

So the buffer can only store packets where when the saturation attack happens. We
can get that not only the packet arrival rate increases but also the storing capability of the buffer
decrease as the attack packet usually has large payload. We can calculate that the packet loss
probability which means the buffer is full in the normal state.

 (1)

 (2)
When the attack happens, the buffer size will decrease from to and arriving rate will

increase from to . The packet loss probability will increase significantly which means a
lot of miss-matched flows will be denied of service.

With our method, all the miss-matched packets will be send to the cache module waiting for
process. Once the threshold is reached, the cache will decouple the payload from packet header.
With the help of the decoupling, the cache can store more packets just with the header information
that is enough for the controller to further analyze.
B. Experiment Result

We use Mininet as our evaluation environment. We apply POX[13] as the SDN controller
platform and develop the security application on it. Then we use Scapy[14] to forge UDP packets
and send attack packets to the OpenFlow switch as Figure 3 shows. At the same time, the client
sends benign TCP request to the server through the switch. We measure the first miss matched
packet delay from the client.

732

Attacker

Client

OpenFlow Switch
Server

POX Controller
Saturation

attack

10.0.0.2

10.0.0.1

10.0.0.3

Fig. 3. Experimental Topology

From Table 1 we can see that without flooding traffic it takes an average time about 30ms to

process and forward the first packet of a new flow in the original OpenFlow network. However,
when the attacker continually sends new flows with large payload to the switch, the delay will be
infinite as the buffer is full and all the new miss-matched packets are dropped. As we adapt
additional cache module, miss matched packets will be directly sent to the cache module waiting for
forwarding to the controller. At normal traffic situation, it also takes about 30ms to forward the first
miss match packet and the extra time can be negligible. When the attack begins, it will take the
controller about 310ms to handle the alert message and return the new rules. The main delay is on
account of the security app’s processing time in the controller.

Table 1. Comparison of OpenFlow and our approach about delay
Time delay OpenFlow Our Approach
Normal traffic 30ms 30ms
Under UDP attack ∞ 310ms

V. Conclusion
In this paper, we propose to add a cache module in the OpenFlow switch which can decouple the

payload from the packet header once the threshold is exceeded. With the help of this method, the
cache size in the switch will increase which can accommodate more incoming miss matched
packets. What’s more, the cache module can organize these packet headers into different flow
indexes and forward them to the controller encapsulating in an alert message. The traffic analysis
application in the controller will analyze the message based on entropy and SVM algorithm. As a
result, the application can install defense flows on the corresponding switches to prevent the attack.
In the experiment, we mainly test the performance of our proposed approach in Mininet. The result
shows that when the flooding attack happens, the benign user can still be served.

Acknowledgement
In this paper, the research was sponsored by China National Science and Technology Major

Projects of the Ministry of Science and Technology of China (Project No. 2013ZX03006002), the
National High Technology of China (863 program, Project No. 2015AA010301), Beijing Natural
Science Foundation (Project No. 4132053), National Natural Science Foundation of China (Project
No. 61471029) and Fundamental Research Funds for the Central Universities (Project No.
2015YJS028).

733

References

[1] ONF, “Software-Defined Networking: The New Norm for Networks,” 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner, “Openflow: Enabling innovation in campus networks,” SIGCOMM CCR, vol. 38, no.
2, pp. 69–74, 2008

[3] Dabbagh, Mehiar, et al. "Software-Defined Networking Security: Pros and Cons." IEEE
Communications Magazine 53(2015):73-79.

[4] Zaalouk, A., et al. "OrchSec: An orchestrator-based architecture for enhancing network-security
using Network Monitoring and SDN Control functions." Network Operations and Management
Symposium (NOMS), 2014 IEEE IEEE, 2014:1-9.

[5] Phaal, P., S. Panchen, and N. Mckee. "InMon Corporation's sFlow: A Method for Monitoring
Traffic in Switched and Routed Networks." RFC3176 2001.)

[6] I Mousavi, Seyed Mohammad, and M. St-Hilaire. "Early detection of DDoS attacks against
SDN controllers." 2015 International Conference on Computing, Networking and Communications
(ICNC) IEEE Computer Society, 2015:77-81.

[7] Braga, Rodrigo, E. Mota, and A. Passito. "Lightweight DDoS flooding attack detection using
NOX/OpenFlow.." 38th Annual IEEE Conference on Local Computer Networks IEEE,
2010:408-415.

[8] Jin, Ruofan, and B. Wang. "Malware Detection for Mobile Devices Using Software-Defined
Networking." Research and Educational Experiment Workshop (GREE), 2013 Second GENI IEEE,
2013:81 - 88.

[9] Kreutz, Diego, F. M. V. Ramos, and P. Verissimo. "Towards secure and dependable
software-defined networks." Second Acm Sigcomm Workshop on Hot Topics in Software Defined
Networking 2013:55-60.

[10] Shin, Seungwon, et al. "AVANT-GUARD: scalable and vigilant switch flow management in
software-defined networks." Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security ACM, 2013:413-424.

[11] Wang, Haopei, L. Xu, and G. Gu. "FloodGuard: A DoS Attack Prevention Extension in
Software-Defined Networks." Dependable Systems and Networks (DSN), 2015 45th Annual
IEEE/IFIP International Conference on IEEE, 2015.

[12] Lakhina A, Crovella M, Diot C. Mining anomalies using traffic feature distributions.[J]. Acm
Sigcomm, 2005, 35(4):217-228.

[13] POX [Online]. Available at: http://www.noxrepo.org/pox/about-pox/

[14] Scapy. 2014, [Online]. Available at: http://www.secdev.org/projects/scapy/

734

