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Abstract. In order to make a precise and quick estimation of the wide-band Frequency-Hopping(FH) 
signal, a blind parameter estimation using numeral characteristics of compressive samplings is 
proposed. First study the compressed numeral characteristics (CNC) of the signal on the premise of 
non-reconstructing the original signal to detect the changes of signal frequency. Then reconstruct 
these data sections to get its frequency domain coefficients. Estimations could be achieved with 
hopping frequency, frequency-hopping periods and the frequency-hopping moments based on the 
frequency domain coefficients. Simulation results show that this algorithm can achieve the same error 
conditions as Wigner algorithm with Gaussian white noise when SNR is 10dB and compress rate is 
1/4. And the number of sampling points of processing required for a quarter of the Wigner algorithm. 
So this algorithm has the advantages of low computing complexity and better real-time performance 
compared with then traditional algorithm using time-frequency characteristics. 

I. Introduction 
With a lot of advantages such as high security, good anti-jam performance and low probability of 

interception, Frequency-Hopping (FH) signals have been widely used in the field of military and 
civilian communications. The parameter estimation of the unknown FH signal mixed with noise 
means to estimate the FH period, FH time and the carrier frequency for the subsequent demodulation 
decryption or track interference.  

Traditional time-frequency analysis method is usually divided into the short-time Fourier 
Transform[1], Wigner-Ville distribution[2], Wavelet Transform[3] and so on. In recent years, the FH 
signals have the development trends of the high frequency band, large bandwidth. According to the 
Nyquist sampling theorem, it needs two times the bandwidth of the sampling rate to ensure 
undistorted sampling FH signal, thus the difficulty of the FH signal sampling and processing of 
computational complexity has greatly increased, so that the efficiency of the traditional signal 
processing reduces. 

As the Compressed Sensing[4] technology puts out that CS can sample the sparse or compressive 
signals by the sampling rate far below than the Nyquist sampling rate and ensure that there is no loss 
of information in the signals. The general signal processing way is to accurately reconstruct of 
sampling values, and then estimate the parameter using the traditional methods. But the accurate 
reconstruction needs large computation which is not conducive to real-time signal processing. In 
order to achieve the detection, estimation and classification purposes, related literatures in recent 
years have studied how to extract the information directly from the compressed sampling values. 
Sampling the FH signals at a relatively low rate by using CS technology, and then estimate the signal 
parameter on the premise of dis-reconstruct the original signal. Reference [5] has studied a FH signal 
synchronization algorithm based on subspace. This algorithm needs to know FH period in advance 
and not consider the sparsity of FH signal in the frequency domain, then it limit the practical 
application. Reference [6] has studied a slide compressive parameter estimation algorithm. This 
algorithm should know FH period in advance, and reconstruct the frequency domain coefficients 
through the OMP algorithm, time-effectiveness is yet to be improved as the computational cost is 
large. 
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In this paper, on the premise of not completely reconstruct the original signal, by the use of FH 
signals’ sparsity in the frequency domain, a parameter blind estimation(CS-PBE) algorithm based on 
CNC has been proposed. This algorithm can accurately estimate the hopping time and carrier 
frequency. This algorithm uses compressed sampling value directly, and can satisfy the real-time 
processing of FH signals because of the small computational complexity and low algorithm 
complexity. Paper structure is as follows: the first part is the introduction; the second part introduces 
the CS technology, FH signal model and parameter estimation model; the third part introduces 
CS-PBE algorithm; the simulation validation is processed in the fourth part; the fifth part summarizes 
the whole thesis and makes conclusions.  

II. Mathematical Model 
A. Compressed Sensing Technology 

Compressed sensing theory refers to using a compressed projection matrix of the sparse signal 
(sparse in a transform domain) mapping, without losing the information in the original signal when 
project the high-dimensional signals into low dimensional space, then reconstruct the original signal 
through an optimization problem. Mainly includes three parts: sparse representation, linear mapping 
and signal reconstruction. 
a) Sparse Representation 

The signals have the sparse representation is the premise of the application of CS. Define an N 
dimension discrete signal x, it can be expressed as a linear combination of a set of standard orthogonal 
basis form: 

 
1

N

i i
i

x s or x Ψsψ
=

= =∑   (1) 

Let 1 2[ , , , ]NΨ ψ ψ ψ=   be a set of standard orthogonal basis or frame. It can be set as Fourier 
orthogonal basis and wavelet basis. Let iψ  be 1N ×  column and s be the coefficient vector of signal 
x. If the vector s have K nonzero elements, all other elements are zero, then we can consider s as the 
sparse representation for signal x in orthogonal basis Ψ, and the sparse degree is K. 
b) Linear Mapping 

The principle of compressed sensing is to linear map high-dimensional signals to low 
dimensional space, it can greatly reduce the amount of data signal processing. By constructing a 
M N×  dimension compressive measurement matrix Φ , we can get the linear measurement value of 
the signal x : 

 y Φx=   (2) 
Let 1My R ×∈  be the compressed sampling values got from x . Equation is the basic process of 
compressive sensing. Put equation into equation: 

 y ΦΨs =Θs=   (3) 
Let ( )M NΘ=ΦΨ R M N×∈ < , and we call it the sensing matrix. CS can achieve the purpose of 
reducing the amount of processing data by sensing compressed sampling values y . In order to 
accurately recover the original signal from compressed sampling values, the sensing matrix Θ   need 
to satisfy the Restricted Isometry Property (RIP) conditions[7]. The measurement matrix commonly 
used includes Gaussian random matrix and Bernoulli random matrix which can satisfy RIP conditions 
with great probability. 
c) Signal Reconstruction 

The reconstruction of sparse signals x can be regarded as solving the following optimization 
problem: 

 
0

min . .
N lx R

x s t ΦΨx = y
∈

    (4) 

There are two main ways to solve this problem: Basis Pursuit (BP)[8] and Orthogonal Matching 
Pursuit (OMP)[9]. The BP algorithm uses 1l -norm optimization to recover signal x. OMP algorithm 
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means to look for the biggest correlation with residual and has selected atoms library 
orthogonalization, and then find out residual in each iteration process. After several iterations, we can 
approximate original sparse signal expressed as a linear combination of these atoms. 
B. Analysis of Wide-band FH Signal’s Sparse 

FH signal model are as follows: 

 ( ( ) ( ))

1 1
( ) ( ) ( ) ( ) ( )

N N
j t t t

n n
n n

x t s t n t a t e n tω j+

= =

= + = +∑ ∑   (5) 

Where FH period

Observe period

1f 1f

T  is the baseband complex envelop of signal FH period

Observe period

1f 1f

T , FH period

Observe period

1f 1f

T  and FH period

Observe period

1f 1f

T  mean that carrier 
frequency and phase are the time-varying functions, FH period

Observe period

1f 1f

T  is white Gaussian noise. 
For wide-band FH signal, it is sparse in a single FH window. Use Gaussian random measurement 

matrix to block sample the FH signal. Then we can get signal hopping range of conversion time 
through comparing with CNC. Two types of FH signal observation model are as follows: 
1. When observation period locates in a FH period, sparse degree of the signal in the observation 

period is 1 in ideal condition. As shown in figure 1: 

FH period

Observe period

1f 1f

T
 

Figure 1 1-sparse signal observation model 
2. When observation period locates between the two FH periods, sparse degree of the signal in the 

observation period is 2 in ideal condition. As shown in figure 2: 

FH period

Observe period

1f 1f

T
 

Figure 2 2-sparse signal observation model 
C. Discrete Fourier Transform(DFT) of FH Signal 

Single hopping signal can be seen as discrete sine signals, it can be expressed as: 

 2( ) cos( )
s

fx n A n
f
π ϕ= +   (6) 

Where A  is amplitude, f  is carrier frequency, sf  is sampling frequency, ϕ  is primary phase. 
Conduct DFT on the N points long signal ( )x n to get ( )X k : 
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Through product of summing equation, we can obtain: 

 

1 1

0 0

1 1

0 0

( ) cos(2 ( ) ) cos(2 ( ) )
2 2

sin(2 ( ) ) sin(2 ( ) )
2 2

N N

n ns s
N N

n ns s

A f k A f kX k n n
f N f N

A f k A f kj n j n
f N f N

π j π j

π j π j

− −

= =

− −

= =

= + + + − +

− + + + − +

∑ ∑

∑ ∑
  (8) 

Substitute sN mf=  into equation: 
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If 0mf k+ ≠ , we know that the sinusoidal signals in the sum of Re1( )X k  and Im1( )X k  must be 
based on N period. So the sum from 0 to 1N −  is zero. Similarly, if 0mf k− ≠ , the sum of Re2 ( )X k  
and Im2 ( )X k  must be zero too. To make mf k+  to be zero, there will be 0f k= = ; To make mf k−  
to be zero, there will be mf k= . 

Through the analysis above, when mf k−  is zero, the ( )X k  will have value as: 

 ( )
2

ANX k =   (10) 

Where / ( / )sk f f N= . 
By the use of numerical value and its position in the original signal, we can accurately estimate 

the original hopping time of FH signal and carrier frequency. 

III. Blind Estimation of  FH Signal Based On CNC 
Consider about the FH signal model in equation, get the compressed sampling of signal according 

to the equation. Choose block sampling method in this algorithm considering that FH signal 
corresponding to different sparse model when the frequency window locates in different space. 

For an N dimension discrete signal x, we construct a 1 1M N×  dimension measurement matrix. Let 

1 2048N = , The ith compressed sampling value is: 
 1 1[1 ( 1) , , ]iy Φx i N iN= + −    (11) 

Where 
11 2 [ / ][ , , , ]T T T T

N Ny y y y=   , and 1[ / ]N N   is the truncating operation. 
According to two sparse signal models of FH signal above, provide blind estimation algorithm of 

FH signal conversion time and carrier frequency. 
A. Rough Estimation of Conversion Time Based On CNC 
If observation period locate in a single hopping period as shown in figure 1, calculate inner product 

of compressed measurements and each column in holographic matrix considering about the 1-sparse 
feature of the signal: 

 HΘ yµ =   (12) 
Where ,H

i iΘ yµ =< > , H
iΘ  is the ith column vector of holographic matrix and 11, 2, ,i M=  . The 

physical meaning it represented is the relevance of compressed measurements and each column of the 
holographic matrix. Through the maximization of iµ , choose the largest column that makes iµ  
maximal. Take the position of the column vector as Compressed Numeral Characteristics: 

 arg max[ , ]H
i i ii

G Θ y= < >   (13) 

Then we can judge signal hopping time range through the difference of CNC. It corresponds to 
2-sparse signal observation model shown in figure 2. 

B. Accurate Estimation of Hopping Time 
Use OMP algorithm to reconstruct the two compressed measurements which are got from rough 

estimation above, then we can obtain two coefficients in frequency domain. Through the derivation of 
FH signal’s DFT, we know that position of the coefficients in frequency domain correspond to the 
carrier frequency, and coefficient values correspond to the length of the signal located in the original 
signal for a certain frequency. Then we can estimate the carrier frequency and hopping time to 
achieve the purpose of accurate estimation. 
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This algorithm only needs to handle little compressed sampling values to complete the parameter 
estimation of FH signal under the premise of without knowing any FH parameters. Reduce the 
amount of data processing greatly, and improve the real-time performance of the algorithm. 
Algorithm steps are as follows: 
1. Block compressed sample of the original signal: 

 1 1[1 ( 1) , , ]i f iy ΦΨ s Θs i N iN= = + −    (14) 

Where 1 1N N
fΨ R ×∈ is Discrete Fourier orthogonal sparse matrix, and 1 1[1 ( 1) , , ]is s i N iN= + −  is ith 

coefficient vector. 
2. Calculate the inner product of iy  and each column in Θ : 

 ,H
i i iΘ yµ =< >   (15) 

3. Calculate the Compressed Numeral Characteristics of the signal: 
 arg max[ , ]H

i i ii
G Θ y= < >   (16) 

4. Determine two compressed sampling values as the hopping period by comparing the difference 
between iG . Then reconstruct signals from these two sampling values to obtain coefficients of 
these two signals in frequency domain:

1 1( )fX k and
2 2( )fX k . 

Where
11 1 / ( / )s fk f f N= and

22 2 / ( / )s fk f f N= . 
1f

N  and
2f

N  represent the signal length 
corresponding to the frequency. 

5. Consider about the coefficients of signals in frequency domain: 1

1
( )

2
f

f

AN
X k =  and 

2

2
( )

2
f

f

AN
X k = . Where 

1
( )fX k and

2
( )fX k  correspond to the amplitude of FFT for different 

frequency. 
The algorithm flow chart of Blind Estimation Algorithm of Wide-band FH signal based on 

Compressed Numeral Characteristics shows in figure 3: 
  Block Compressed 

Sampling Values 

Frequency 
Hopping Range

iy

Reconstruct the original 
signal of hopping range  

Accurate Estimation of 
Hopping Time

Discrete Fourier Transform

arg max( )H
i

i
yΘ

OMP Alogrithm

Estimation of 
Carrier Frequency 

Time-Frequency 
Characteristic of FH Signal  

Figure 3 Flow chart of CS-BPE algorithm 

IV. Simulation and Analysis of Algorithm 
The compressed samples y are obtained by the block compressed sample for the original signal 

with measurement matrix Φ  ( 1 1
1, 2048M NΦ R N×∈ = ). Where 1N  is the single sampling point, the 

elements of  Φ  are all consistent with the Gaussian distribution (0,1/ )MΝ . Sparse matrix Ψ  is the 
standard discrete Fourier orthogonal basis. 

Original signal parameter settings are as follows: hopping period is 1T ms= ,  Nyquist sampling 
rate is 20sF MHz= . Each FH cycle includes 10000 sampling points. Modulation model is BFSK, the 
symbol rate is 2000B, each hopping cycle sends a code element. The total bandwidth of FH signal is 8 
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MHz, frequency interval is 1 MHz. The duration of the first hopping is randomly generated in 0 ~ T . 
The FH signal’s STFT graph is shown in Figure 4: 
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Figure 4 FH signal time-frequency figure 

Definite normalized mean square error ˆ( )NMSE f of carrier frequency estimation f̂  is: 

 
2

1

ˆ1ˆ( ) ( )
TN

i i

iT i

f fNMSE f
N f=

−
= ∑   (17) 

Algorithm uses expectation of the ratio between estimation error and single FH cycle square to 
represent FH hopping time’s estimation error: 

 2
ˆ

( ) ( )K

K K
E E

N

−
∆ =   (18) 

A. Carrier Frequency Estimation Simulation 
The NMSE of  using this algorithm to estimate carrier frequency under different signal-to-noise 

ratio and compression ratio is shown in figure 5: 
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Figure 5 NMSE of carrier frequency estimation under different SNR and compression ratio 

As shown above, as the signal-to-noise ratio SNR and the compression ratio M/N change, 
performance of carrier frequency estimation will be better. Under the condition of / 1/ 2M N = , and 
SNR is above -10dB, algorithm achieve the optimal carrier frequency estimate. 

 
B. FH Signal Hopping Time Estimation Simulation 

Using this algorithm of estimating hopping time to make comparison with the Wigner method  
under different SNR conditions.   

We can regard the biggest transformation frequency of single hopping period as the hopping time 
estimation. For signal above, respectively conduct two algorithms by 1000 monte-carlo experiments 
independently.  The compression ratio of block compression in the process of sampling in this paper 
is / 1/ 4M N = .Sampling points in single sampling time is 2048N = . Different estimated error of 
hopping time under different SNR conditions is shown in figure 6. It can be seen from the simulation 
results that CS-BPE algorithm is better than Wigner method in the case of low signal noise ratio 
because that the Wigner algorithm does not take into account the removal of cross terms. With the 
improvement of signal-to-noise ratio, two algorithms of parameter estimation error are reduced 
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accordingly. By the condition of 4SNR dB> , the error of the Wigner method is close to the algorithm 
in this paper. 
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Figure 6 Hopping time error comparison under different SNR 

As is shown in figure 6, the simulation error of this algorithm is lower than Wigner algorithm. 

V. Conclusion 
This paper puts forward a FH signal blind estimation algorithm based on compressed numeral 

characteristics. First of all, find out the location of the frequency changes through the study of 
compressed numeral characteristics under the premise of not to reconstruct the original signal. And 
then reconstruct the data segment to get the coefficients in frequency domain. At last, estimate carrier 
frequency and FH time according to the location and size of the coefficients in frequency domain. 
The simulation results verify the performance of the algorithm, because only a small piece of data is 
needed for estimation, the algorithm performance is better than the traditional algorithm, and has a 
huge advantage in computing complexity. Algorithm in this paper does not need to know a prior 
information of FH signal, without having to completely reconstruct the original signal, so that greatly 
simplify the procedure of signal processing, improve the time-validity of the FH signal parameter 
estimation. 
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