
Efficient Regular Expression Grouping Algorithm Based on Label
Propagation

Xi Chena, Shuqiao Chenb and Ming Maoc
National Digital Switching System Engineering & Technology Research Center, Zhengzhou, China

a1157123878@qq.com, bbfw0901@163.com, c517282681@qq.com

Keywords: regular expression, deep packet inspection, grouping algorithm, label propagation.

Abstract. Regular expression grouping is the practical way to address the state explosion problem
of Deterministic Finite Automaton (DFA). Previous grouping algorithms have poor grouping time,
and difficult to meet application needs. In this work, we present an efficient regular expression
grouping algorithm based on label propagation. Through the deterministic initial grouping and
based on similarity of the propagation process to achieve faster convergence. Experimental results
show that. Compared with other algorithms, GBLP algorithm has the minimum total number of
states and grouping time for the same number of groups.

Introduction.
With the increasing network security threats, Deep Packet Inspection (DPI) is becoming more

and more important in security application and research. It describes the threats (e.g. spam, virus or
anonymous intrusion) by default description of the signatures, to identify the network flows with
malicious information in the payload of their packets. Nowadays, regular expressions have
gradually become the main description language of DPI signatures owing to its expressiveness and
flexibility.

Regular expression is usually achieved by Finite Automata (FA). The Deterministic Finite
Automata (DFA) with its linear and predictable matching speed becomes the research hotspot.
However, the DFA may require a huge amount of memory become of the state explosion problem.
The number of DFA states can be exponential in size of regular expression as shown in Fig.1. So
many algorithms for the DFA storage optimization have been proposed.

P Q R S
a b c d

[^a]

T

PV QV RV SV
a b c d

[^ae]

TV

PW

PX

PZ

f

g

e

h

PY

[^ce]

RW

RX

RZ

RY

e

f

g

h

[^c]

QX SX TX
a b c d

[^ag] [^cg]

V

W

X

Z

f

g

e

h

Y

[^ag]

[^ae]

ab.*cd ef.*gh /ab.*cd/ and /ef.*gh/

Fig.1 Example of state explosion
But in the current era of big dada, the scale and complexity of the DPI rule set is also increasing.

The problem of the DFA state explosion may cause it difficult to generate. The rule set of L7-Filter
is compiled to DFA which needs more than 16GB of memory. The general machine is difficult to
achieve. At this case, most of the storage optimization algorithms (D2FA, &FA, etc.) cannot be
applied. But grouping algorithm can effectively avoid inflation between regular expressions.

However, as the demand for the real-time detection under the high-speed network environment is
gradually prominent. The grouping time of the existing regular expression grouping algorithm is

4th National Conference on Electrical, Electronics and Computer Engineering (NCEECE 2015)

© 2016. The authors - Published by Atlantis Press 1054

longer and it is difficult to be applied in practice. Therefore, in this work, an efficient regular
expression grouping algorithm based on label propagation (GBLP) is designed. It can achieve the
effective balance between grouping time and grouping effect.

Finally, we implement the GBLP algorithm and the other 3 kinds of grouping algorithms in
L7-Filter, Snort and Cisco security application. The experimental results based on practical rule sets
show that under the same number of clusters, the GBLP algorithm has improved the total states
number and grouping time, especially on grouping time reduced from 2 to 5 times.

Related Work
DFA main memory consumption is an n×∑ (n is the number of state, ∑ is alphabet of ASCII) of

the State Transition Table (STT). It occupies more than 95% of the DFA storage space. Therefore,
the method of solving the DFA memory can be divided into two directions: reduced state transition
edge [1-4] and reduced state number [5-10]. Each of these States is corresponding to the 256
transition edges, so the compression of the edge is limited. The reduction in the number of states
can avoid the space explosion by the nature. In this work, we choose to design a fast and efficient
algorithm to reduce the number of states.

F. Yu et al. [5] first proposed regular expression grouping algorithm, called mDFA. However, the
algorithm only uses the mutual relationship between the regular expressions by 0 and 1. Grouping
strategy is too simple. Becchi et al. [6] used the grouping method of dichotomy to achieve faster
grouping time, but the partial grouping effect is sacrificed. Q. Xu et al. [7] defined the Dilate Ratio
(DR) to describe the expansion effect of regular expressions, and put forward a kind of selective
clustering algorithm REGADG to improve the grouping effect. But the algorithm may lose
information. Rohrer [8] and Fu Z [9] abstracted the grouping problem, and combined with the
existing optimization algorithm (integer linear programming, simulated annealing, genetic
algorithm and ant colony optimization algorithm) to achieve better effect of grouping. But even
though Fu Z designed a DFA estimation algorithm to accelerate the execution speed, grouping time
is still higher than the traditional mDFA. Liu Tingwen [10] proved that the optimum k-grouping
problem of regular expression set was NP-hard, and the local optimization algorithm GRELS was
designed. But the grouping time has not been improved significantly.

Obviously, the previous regular expression grouping algorithm has gradually improved the
grouping effect, less memory footprint. However, with the increasing demand for network security
and service quality, the importance of data real-time detection is also more prominent. And the
grouping time of the grouping algorithm is closely related to detection efficiency. At the same time,
the analysis found that the previous grouping methods usually adopt the method of random traverse
and multiple iterations. And no deterministic initial group was given.

GBLP Algorithm.
The regular expression grouping is to divide the regular expression set into multiple sub sets.

The goal is to minimize the DFA expansion states number. The label propagation algorithm is
simple and easy to implement. The implementation time is short, especially suitable for large scale
dense graph grouping. Therefore, this work will reference the idea of label propagation. We
optimize the distribution of the initial label and the transmission process. Finally, the reduction of
grouping time is realized in the premise of effective grouping.

In practical application, the parallel processing capability of hardware platform will limit the
maximum group number. In general, the number of groups is determined by the maximum parallel
processing capability of the device. So we set the known number of clusters K, minimizing the total
number of states.

Introduction to Label Propagation Algorithm.
Label propagation algorithm [11] (LPA) is proposed by Zhu et al. in 2002. Its basic idea is to

construct a sample connection diagram, which gives a different initial label to each vertex. Then
according to the principle of voting, the label that has the largest number of tags in the adjacent

1055

vertices is transmitted to the vertex. Finally, the same label vertices are divided into a group.
Label propagation algorithm including initialization, label update, and add the same tag vertex to

the same group three parts. Each vertex is assigned a unique label. And the optimal group is
achieved after multiple iterations. But in the process of transmission, a large number of small
groups can be generated. Many meaningful labels are fuzzy. At the same time, the communication
effect based on the principle of simple voting is poor. And simple voting principle is not suitable for
complete graph of connected to each other.

Therefore, label propagation algorithm cannot be directly applied to the regular expression
grouping. We design a fast and efficient regular expression grouping algorithm by improving it.
Mainly includes two steps: deterministic initial group selection and label propagation based on
similarity.

Design and Implementation of GBLP.
In view of a regular expression set R= {r1, r2, ..., rn}, we construct a undirected complete

graph G= (V, E). Which V= {v1, v2, ..., vn} for vertex set, where each vertex vi represents a
regular expression ri. Every pair of vertices vi and vj has an edge weight eij. In order to describe the
relationship between the regular expressions, the concept of the Expansion Rate (ER) is introduced
as the edge weight.

Definition 1: For any regular expression ri and rj, ER formula is as follows:

(,)
() ()

i j
i j

i j

T r r
ER

T r T r+
（r,r）= （1）

T(ri) and T(rj) respectively corresponding to the regular expression ri and rj compiled into state
of DFA. T(ri, rj) said the regular expression ri and rj combined generated DFA state number. When
ER > 1, the corresponding regular expression is merged and the expansion is generated. The greater
the ER is, the more serious the state expands. The corresponding regular expressions should be
divided into different groups. When ER is less than or equal to 1, said the corresponding two
regular expressions do not interact. ER is close to 0, the corresponding regular expressions are more
likely to be classified into the same group.

A. Initial Group Selection.
The original label propagation algorithm assigns each vertex a unique label, which leads to many

small groups in the iterative process. The meaningful label cannot be emerged a large number at
first. This reduces the convergent speed and accuracy limit problems. In the case of the known
packet number K, the "critical" K vertices may be selected as the initial group and the initial tag is
given. This can effectively reduce the number of labels, speed up the convergence rate, and improve
the accuracy of the group.

The selection of "critical" K vertices, namely choose K and all the vertices do not produce or
produce the expansion of the state of the vertices as little as possible. The concept of Peak Intensity
(PI) is introduced in this paper to describe the expansion effect of the regular expression in the
vertices.

Definition 2: For regular expression ri corresponding vertex vi, PI formula is as follows:

1,
() (,)

j n

i i j
j i j

PI v ER r r
=

= ≠

= ∑

 （2）

PI is the weight of all edges on the corresponding vertices. The greater the PI indicates that the
vertex and the rest of the merger have a larger expansion rate. The vertex corresponds to a regular
expression is more complex. On the contrary, the smaller PI vertex corresponds to a regular
expression is more simple, the smaller the state expansion caused by. According to the above
analysis, we first calculate the PI of n vertices and prioritize. Then, according to the PI value, the
minimum K vertices are selected as the initial group Gi and assigned the initial labels.

B. Label Propagation Grouping Process.
In this process, the traditional labeling algorithm is based on the principle of voting to select the

1056

common label. In order to avoid the label shocks, usually adopt the strategy of asynchronous to
update the label. The updating formula is as follows:

1 (1) (1)() ((), , (), (1), , (1))vi vi vi i vi i vinC t f C t C t C t C t− += − −  （3）
Among them, vi1, …, vin is the vertex vi of all the adjacent vertices, vi1, …, vi（i-1） indicates that

the vertex of the label has been updated before this iteration, vi（i+1）, …, vin said the iteration of the
label has not updated the vertex, f function as described above. But it cannot be directly used in here.
Each vertex is connected to each other in a complete graph G. And we can achieve the minimum of
the expansion state for the purpose of grouping. So we need to modify it. The concept of vertex
Similarity (S) is introduced.

Definition 3: For vertex vi and vj, S formula is as follows:

1(,)
(,)i j

i j

S v v
ER r r

= （4）

The S (vi, vj) between vi and vj is the reciprocal of ER (ri, rj). Obviously, the greater the
similarity between vertices, the corresponding two vertices should be for the same group. So in
order to achieve the least number of expansion state. We design a method of label propagation
based on similarity, label propagation formula is:

1 (1) (1)() ((), , (), (1), , (1))vi vi vi i vi i vinC t g C t C t C t C t− += − −  (5)
In the above formula, g returns the sum of the similarity and the maximum of the neighbor

vertices in the vertex vi. If the sum of similarity is equal, then randomly choose one. The
propagation method can effectively limit the spread of the label randomness, and improve the
convergence precision.

C. Algorithm Implementation.
Based on the above two steps, the final group according to the label information on each vertex.

Label propagation grouping algorithm steps are as follows:
Step1: Calculate the PI of each vertex in the complete graph G. Since the childhood prioritize

put in X;
Step2: Calculate the similarity between arbitrary vertices;
Step3: According to the number of clusters K, PI's smallest K vertices are selected, and the

initial label is assigned;
Step4: Set up t =1, update label, for(vi∈V),

1 (1) (1)() ((), , (), (1), , (1))vi vi vi i vi i vinC t g C t C t C t C t− += − −  ；
Step5: If all vertices are assigned labels and not change, the algorithm ends, or set t =t+1, to

Step4.
Algorithm Analysis.
All kinds of regular expression grouping algorithms need to calculate expansion relationship

between the rules. This step can be considered as the preprocessing stage of the regular expression
grouping, and the time complexity is O(n2) (n number of rules in regular expression set R). So we
neglect this step in the process of analysis. The time complexity of the grouping process is
considered only. We put forward an effective regular expression grouping algorithm based on label
propagation. The initial grouping and the label propagation based on similarity are linear. The time
complexity of the grouping process is O(n). For the previous grouping algorithm, the expansion
relationship needs to be calculated in each iteration process. The time complexity is generally O(n2).
Therefore the time complexity of GBLP is especially improved.

Experiment and Analysis.
In this section, we conducted a series of experiments to evaluate the performance of GBLP

algorithm. All experiments were performed on Virtual Machine 8.0. The virtual machine

1057

configuration is as follows: operation system: Ubuntu 11.10, internal memory: 8 GB, Intel dual core
2.5 GHz CPU. The Regular Expression Processor [6] is used to calculate the accurate number of
states of a regular expressions distribution, as the metric of memory consumption. Three rule sets
picked from L7-Filter、Snort and commercial corporation Cisco are used, as shown in Table 1.

Table 1. RULE SETS INFORMATION
Rule sets # of RegEx % RegEx w/ wildcards (*，+)
Snort-158

L7-Filter-80
Cisco-233

158
80
233

84.25
65.33
13.65

We generated mDFA [5], Becchi [6], GRELS [10] and GBLP respectively with different rule sets
in Table 1. We compared them on the total states number of the DFAs constructed from groups and
grouping time.

Table 2. GROUPING RESULTS FOR Snort-158

Grouping
algorithm

K=5 K=6 K=7
states

number
Grouping
time(s)

states
number

Grouping
time (s)

states
number

Grouping
time (s)

mDFA
Becchi
GRELS
GBLP

13637
43695
7677
7374

1030
775
938
473

8420
32316
5736
5236

418
403
441
286

6157
17040
4672
3681

279
143
244
119

Table 3. GROUPING RESULTS FOR L7-Filter-80

Grouping
algorithm

K=5 K=6 K=7
states

number
Grouping
time (s)

states
number

Grouping
time (s)

states
number

Grouping
time (s)

mDFA
Becchi
GRELS
GBLP

29256
216093
21072
20153

2308
1953
2139
718

20742
180702
15519
15051

1177
1035
1009
491

16119
130277
10052
9334

986
541
717
318

Table 4. GROUPING RESULTS FOR Cisco-233

Grouping
algorithm

K=5 K=6 K=7
states

number
Grouping
time (s)

states
number

Grouping
time (s)

states
number

Grouping
time (s)

mDFA
Becchi
GRELS
GBLP

20839
22205
17877
15157

3059
1762
1538
495

18005
17001
14136
12355

2611
1127
714
367

15971
16893
10383
9003

1540
774
663
189

As shown in Table 2. On Snort-158 rule set, under the same group number, the states number of
mDFA algorithm is less than that of the Becchi algorithm, but the grouping time is the longest. The
GRELS algorithm of local optimization on the total number of state has obviously improved than
the above two groups, but the grouping time is still longer. While GBLP algorithm proposed in this
work is the smallest in two indicators. The total number of states is reduced by about 10%
compared with the GRELS algorithm. The grouping time is reduced by more than 47% of the
Becchi algorithm.

Table 3 shows both effectiveness and efficiency for L7-Filter-80 rule set. Although the regular
expression of the rule set is more complex, the state expansion is more serious. GBLP algorithm is
compared with the current GRELS algorithm, on the basis of the total number of State to be reduced,
the grouping time is reduced by more than half.

As shown in Table 4, under the same group number, the state number of the existing grouping
algorithm is far greater than the GBLP algorithm. GBLP algorithm runs 5 times and 3 times faster

1058

than Becchi algorithm and GRELS algorithm, respectively.
By the above analysis, in the same number of clusters, the states number of GBLP algorithm and

the grouping time are improved compared with the previous grouping algorithm. In similar about
the complex L7-Filter、Snort rule sets, GBLP algorithm can reduce the number of states slightly,
and grouping time is reduced by about half. While in the Cisco security applications and other
simple rule sets, the algorithm performance is more prominent. Compared with the latest GRELS
algorithm, the grouping time decreases by 3 times.

Conclusions
In view of the current high-speed network environment, the grouping time of the existing regular

expression grouping algorithms is longer. And they are difficult to meet the needs of real-time
detection in practical application. We propose a new fast and efficient grouping algorithm, which is
efficient regular expression grouping algorithm based on label propagation (GBLP). Learn from
simple and quick label propagation ideas. We give a method to determine the initial groups, and to
design the grouping process based on the similarity. The experimental results show that the
proposed GBLP algorithm has less number of states and shorter grouping time than the current
grouping algorithms, which can achieve the effective balance between memory occupancy and
grouping time. The future work is to consider the expansion influence of different characteristics,
and further improve the grouping accuracy of the algorithm.

Literature References

[1] Kumar S, Dharmapurikar S, Yu F, et al. Algorithms to accelerate multiple regular expressions
matching for deep packet inspection[J]. ACM SIGCOMM Computer Communication Review, 2006,
36(4): 339-350.

[2] Becchi M, Cadambi S. Memory-efficient regular expression search using state merging[A].
26th IEEE International Conference on Computer Communications (INFOCOM 2007)[C]. IEEE,
2007: 1064-1072.

[3] QI Y, Wang K, Fong J, et al. FEACAN: Front-end acceleration for content-aware network
processing[A]. 2011 Proceedings IEEE INFOCOM[C]. IEEE, 2011:2114-2122.

[4] Becchi M, Crowley P. A hybrid finite automaton for practical deep packet inspection[A].
Proceedings of the 2007 ACM CoNEXT conference[C]. ACM, 2007:1-12.

[5] Yu F, Chen Z, Diao Y, et al. Fast and Memory-efficient Regular Expression Matching for Deep
Packet Inspection[C]. ANCS ’06. New York, NY, USA: ACM, 2006:93–102.

[6] Becchi M, Franklin M, Crowley P. A workload for evaluating deep packet inspection
architectures[C]. In: Proc. of the IISWC 2008. Piscataway: IEEE Computer Society.
IEEE ,2008:79− 89.

[7] Xu Qian, E Yue-peng, Ge Jing-guo, et al. Efficient regular expression compression algorithm
for deep packet inspection[J]. Journal of Software, 2009,20(8):2214−2226.

[8] Rohrer J, Atasu K, Lunteren JV, et al. Memory-Efficient distribution of regular expressions for
fast deep packet inspection[C]. CODES+ISSS 2009 Proceedings, Grenoble, France, Oct 11-16,
2009:147 − 154.

[9] Fu Z, Wang K, Cai L, et al. Intelligent grouping algorithms for regular expressions in deep
inspection[C]. Computer Communication and Networks (ICCCN), 2014 23rd International
Conference on. IEEE, 2014: 1-8.

[10] Liu Ting-wen, Sun Yong, Bu Dong-bo, et al. 1/(1-1/k)-Optimal algorithm for regular
expression grouping[J]. Journal of Software, 2012,23(9):2261-2272.

1059

[11] Zhu X, GHAHRAMANI Z. Learning from labeled and unlabeled data with label
propagation[R]. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.

1060

