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Abstract. In this paper we propose a DOA estimation method by combining propagator method 
(PM) algorithm for co-prime L-shaped arrays. The array contains two uniform L-shaped arrays with 
the minimum inter-element spacing larger than the half-wavelength, which will cause phase 
ambiguity. Utilizing the co-prime relationship between each decomposed array can eliminate phase 
ambiguity. With PM algorithm, we avoid peak searching and eigenvalue decomposition of received 
signal covariance matrix, which have a low computational complexity. Compared with the typical 
L-shaped arrays which have the same amount of array elements, the proposed method for co-prime 
L-shaped arrays have a better 2D-DOA estimation performance and a low computational cost. 
Extensive simulation results demonstrate the effectiveness of the proposed method. 

I. Introduction 
Direction of Arrival (DOA) estimation, which is a basic problem of array signal processing, is 

widely used in civil and military realms [1-2]. Numerous 2D-DOA estimation algorithms have been 
proposed in the past decades for different arrays [3-5]. Among this, the L-shaped array which has a 
simple structure and easy to be implemented, is widely used in the fields of 2D-DOA estimation. 
Recently, in order to break the limit of half-wavelength, the notation of co-prime arrays is presented 
which makes it possible to increase the degree of freedom and enhance the resolution of the array. 
IN [6], authors present the design approach of co-prime array to eliminate angle ambiguity. In [7], a 
co-prime linear sparse array, which is capable of significantly increasing the degrees of freedom, is 
employed for one-dimensional DOA estimation. In [8], authors propose a sparse co-prime L-shaped 
array, and utilize the array extending capability of FOCs and the co-prime relationship between the 
interelement spacing to realize DOA estimation without phase ambiguity.  

In this paper, we propose a 2D-DOA estimation method for co-prime L-shaped arrays with PM 
algorithm. We first construct a co-prime L-shaped array consisting of two uniform L-shaped 
sub-arrays. Then realize DOA estimation through decomposed sub-arrays, respectively. At last, 
exploiting the co-prime relationship between each decomposed array can eliminate phase ambiguity. 
With PM algorithm, we avoid peak searching and eigenvalue decomposition of covariance matrix, 
which have a low computational complexity and obtain great 2D-DOA estimation performance.  

The reminder of this paper is organized as follows. Section II introduces the co-prime L-shaped 
array system model. In Section III, we make the derivation for the 2D-DOA estimation with PM 
algorithm and give the method to eliminate phase ambiguity. Section IV gives complexity analysis 
and advantages. Simulation results are provided in Section V and Section VI concludes this paper. 
Notations: Lower-case (upper-case) bold symbols to denote vectors (matrices). ( ) T , ( ) H , 1( )− , ( )+
denote the transpose, the conjugate transpose, the inverse and the pseudo inverse, respectively. ( )E
is the statistical expectation operator. ( )angle  denotes phase operator and    denotes ceiling 
function. 
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II. Data model
The co-prime L-shaped arrays are nest arrays which can be decomposed into two uniform

L-shaped
sub-arrays with ( )2 1 1,2− =iM i sensor elements, respectively, where iM is the number of elements 
in x-direction and y-direction of the ith sub-array. 1M  and 2M  are co-prime integers. The array 
with  12 1M −  and 22 1M −  elements has inter-element spacing of 1 2 / 2d M= λ , 2 1 / 2d M= λ , 
whereλ denotes the wavelength. The locations of the elements in the ith L-shaped sub-array are in 
the set: 

} Ls = {(0,md1 1),0  m≤ ≤ M −1}1 {(md ,0),01 m≤ ≤ M1 −1 (1) 

{ } { }2 2 2 2 2(0, ),0 1 ( ,0),0 1Ls nd n M nd n M= ≤ ≤ − ≤ ≤ − (2) 
Fig.1 shows the co-prime L-shaped arrays with 1 25, 7M M= = . kθ is the elevation angle and kϕ

is the azimuth angle of the kth source ( [0, / 2], [0, ])k k∈ ∈θ π φ π .  

X

Y

Z

Fig.1. Co-prime L-shaped array model when 1 25, 7M M= =  
We consider the uniform L-shaped sub-arrays with 2 1M − sensor elements. The observed 

signals at the sub-array along the x-axis and y-axis are given by 

x x= +X Α S N  and y y= +Y A S N (3) 

where 1 2[ ( ), ( ), ( )]T
Kt t t=S s s s

, represent the source matrix. M L
x

×∈N  , M L
y

×∈N   represent the 

additive white Gaussian noise matrix. 1 1 2 2[ ( , ), ( , ), ( , )]x x x x K K=A a a aθ ϕ θ ϕ θ ϕ  represent steering 

matrix at x-axis, 1 1 2 2[ ( , ), ( , ), ( , )]y y y y K K=A a a aθ ϕ θ ϕ θ ϕ represent steering matrix at y-axis, where 

( ) ( )2 2 ( 1)[1, , ]k kj d j d M
x k kθ ,φ = e e− − −a 

π µ λ π µ λ and ( ) ( )2 2 ( 1), [1, , ]k kj d j d M
y k k = e e− − −a 

π ν λ π ν λθ j are the 

x-direction and y-direction steering vectors. sin cos , sin sink k k k k kµ θ ϕ n θ ϕ= = ( 1, 2, )k K= 
. 

III. 2D PM algorithm and Phase ambiguity elimination
In this section, we first apply PM algorithm to sub-array to obtain the DOA estimations.Then

verify that the phase ambiguity can be eliminated by combining the estimation results of the two 
sub-arrays. 
A. PM algorithm

According to [5],we can construct the matrix C as shown below

1

1

1

1

11

12
1

3 1

4 1

H
x S y

H
x x S y H

S yH H
x y S y

H H
x x y S y

        = = =          

A R AC
A Φ R AC

C AR A
C A Φ R A
C A Φ Φ R A

(4)

where 1xA , 1yA are the first 1M −  lows of the matrix xA and yA , respectively. { }H
S E=R SS , 

1 2 2 /2 / 2 /[ , , ]kj dj d j d
x diag e e e−− −=Φ 

π µ λπ µ λ π µ λ , 1 2 2 /2 / 2 /[ , , ]kj dj d j d
y diag e e e−− −=Φ 

π ν λπ ν λ π ν λ . 
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Partition the matrix A
11

1
2 1

HH

    
= = =    
    

A IA
A A

A PP A
(5) 

where 1
K K×∈A  , (4 4 )

2
M K K− − ×∈A  . P  is propagator operator. Partition ˆ H

C =R CC  as 
ˆˆ ˆ[ ]C =R G,H (6) 

where (4 4) (4 4) (4 4 )ˆ ˆ,M K M M K− × − × − −∈ ∈G H  . Propagation operator P  can be estimated by
1ˆ ˆ ˆˆ ˆ( )H H−=P G G G H (7) 

For Eqs. (4), (5), in the no-noise case, define matrix E as 
11

12

13

14

ˆ

x

x x
H

x y
H

x x y

  
      = = =        
    

H

AE
I A ΦE

E T
A ΦEP

A Φ ΦE

 (8) 

where 1
1
−=T A . For Eq. (8), we get 

3 1 1

4 2

H
y

−   
=   

   

E E
T Φ T

E E
and 12 1

34
x

−  
=   

   

EE
T Φ T

EE
(9)

Define 1 H
y y

−=Ω T Φ T , 1
x x

−=Ω T Φ T . The least squares solution of yΩ and xΩ are 

1 3

2 4

ˆ
y

+
   

=    
   

E E
Ω

E E
and 1 2

3 4

ˆ
x

+
   

=    
  

E E
Ω

E E
(10) 

We use eigenvalue decomposition (EVD) for ˆ
yΩ , ˆ

xΩ to get

( )ˆ angle / 2k k d=nll   π  and ( )ˆ angle / 2k k d= −µ e l π  (11) 

where kλ , kε is the kth eigenvalue of yΩ and xΩ . After paired ( )ˆˆ ,k kµ ν , ˆ ˆ( , )k kθ ϕ can be obtained as 
1 2 2ˆ ˆ ˆsin ( )k k kv−= +θ µ  and 1ˆ ˆ ˆtan ( / )k k k

−=ϕ n µ  (12) 
B. Phase ambiguous elimination

Consider that one single source imping on the co-prime array located at ( , )k kθ ϕ .The phase 
difference of adjacent receive signal along x-axis and y-axis can be expressed as 

2 sin cos 2x k k xd k∆ = −ψ π θ ϕ λ π  and 2 sin sin 2y k k yd k∆ = −y π θ ϕ λ π  (13) 

where xk , yk are integers, ( ),xψ π π∆ ∈ − , ( ),yy π π∆ ∈ − . Because [ ]0, 2kθ π∈ , [ ]0,kϕ π∈ , we 

get 1 sin cos 1k kθ ϕ− < < , 0 sin sin 1k kθ ϕ< < . 20 (sin cos )k k< +θ ϕ 2(sin sin ) 1k k <θ ϕ . So we can get 

,
2 2

x x
x

d dk ψ ψ
λ π λ π

∆ ∆ ∈ − − − 
 

 and ,
2 2

yx
y

dk
yy

π λ π
∆ ∆

∈ − − 
 

(14) 

Consider 2d Mλ= , the numbers of possible xk and yk values equal to M and / 2M   . There 
exsit many different values of 2D DOAs satisfy Eqs.(13). That is the reason why appear phase 
ambiguity. Fig.2 and Fig.3 shows perfect DOA and its ambiguous DOAs in the transformation 
domain with the setting of 1 1( , ) (20 ,30 )=  θ ϕ and 2 2( , ) (40 ,50 )=  θ ϕ . 
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The Perfect 
DOAs

The Perfect 
DOAs

Fig.2. DOA estimations when d=5 2λ Fig.3. DOA estimations when d= 7 2λ
For the Eqs.(13), the realationship between perfect DOA , ,( , )p k p kθ ϕ  and ambiguous DOAs 

, , , ,( , )a i k a i kθ ϕ  of ith sub-array are given by 

, , , ,2p k a i k i x jk Mµ µ− =  and , , , ,2p k a i k i y jk Mν ν− = (15) 

where ,i xk , ,i yk are integers, jM is the number of sensor elements at x-axis, , 1, 2i j = and j i≠ . 

Suppose that there exist two distinct 2D DOAs, ,1 ,1
ˆ ˆ( , )a aθ ϕ , ,2 ,2

ˆ ˆ( , )a aθ ϕ that are both obtained by the 
two sub-arrays which are both ambiguous 2D DOAs with respect to the perfect 2D DOA , ,( , )p k p kθ ϕ .  
According to Eqs.(15), we can get 

,1 ,2 ,ˆ ˆ 2a a i x jk M− =µ µ  and ,1 ,2 ,ˆ ˆ 2a a i y jv v k M− = (16) 
where ,i xk and ,i yk  are integers and ,i xk  is in the range of ( , )j jM M− , while ,i yk is in the range of 
( 2, 2)j jM M− and , 1, 2i j = and j i≠ .Hence,we get 

1, 2,

2 1

x xk k
M M

= and 1, 2,

2 1

y yk k
M M

= (17) 

Due to the co-prime property between 1M and 2M , only 1, 2, 0x xk k= = , 1, 2, 0y yk k= =  that 
satisfy the Eq.(17). Hence, combining two DOA estimations between sub-arrays, there exists and 
uniquely exists a common 2D DOA, which is the perfect DOA. 

IV. Performance analysis
A. Complexity
The complexity of the proposed method is 

( )( ( ) ( )( )2 23 2
1 2 1 26 4 2 16 1 1O K K M M K M M+ − + − + −+ + ( ) ( )( ))3 3

1 216 1 1M M− + −

B. Advantage
a. The method avoid spectrum peak search and don’t require eigenvalue decomposition of

received signal covariance matrix. It has lower computational complexity than standard L-shaped 
arrays. 

b. The co-prime L-shaped arrays have better performance than the uniform L-shaped arrays with
the same number of sensor elements when using PM algorithm. 

V. Simulation results

The co-prime L-shaped array can be decomposed into two uniform sub-array with 12 1M − and
22 1M − sensor elements. Here, we set 1 25, 7M M= = .Suppose K=2 sources impinging on the 

arrays located at ( )20 30,° °  and ( )40 50,° ° . 

1554



The root mean square error (RMSE) of the estimations is defined as the performance metric: 

( )
S K

k k,s
s=1 k=1

1RMSE = α - α
SK ∑∑



2

(18) 

where S  denotes the times of Monte-Carlo simulations and α ,k s  is the estimation of the kth angle
α

k
for the sth trial (S=1000). 

In this simulation, we first give the simulation results when 5=SNR dB and15dB , where
200=L as shown in Fig.4 and Fig.5. Second, we study the RMSE performance of the co-prime 

L-shaped array and the uniform L-shaped array under different SNRs as shown in Fig.6. It is clearly
indicated that the co-prime L-shaped array has better performance. Last, we study the RMSE
performance of the co-prime L-shaped array in the setting with different number of snapshots L, as
shown in Fig.7. It is clearly indicated that the performance of the co-prime L-shaped array is getting
better with L increasing.

Fig.4. Scatter diagram at SNR=5dB       Fig.5. Scatter diagram at SNR= 15dB. 

Fig.6. RMSE versus the SNR       Fig.7. RMSE versus the SNR in L

VI. Summary
In this paper, we have investigated the problem of 2D-DOA estimations in co-prime L-shaped

arrays whose inter-element spacing is larger than half wavelength, which will cause phase 
ambiguity. To avoid spectrum peak search, we estimate the 2D DOA with PM algorithm. By 
combining the results of the two sub-arrays, the phase ambiguity can be eliminated, so we can 
obtain the perfect DOAs. It is shown that the co-prime L-shaped array has better performance and 
lower complexity than the typical uniform L-shaped array through simulations. 
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