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Abstract. A new compressive fusion algorithm based on non-uniform sampling is proposed. 
Although conventional block-based compressed sensing (BCS) represents a low computational cost, 
it suffers from low reconstruction quality since it is not well accounting for global image features. 
Employing the structured random matrix, multiscale non-uniform BCS (MNBCS) is implemented 
with decomposition level-dependent block-sizes and subrates. The proposed methodology improves 
the reconstruction quality without impacting the computational complexity. Experimental results 
show that the iterative soft-thresholding projection (ISTP) reconstruction with MNBCS achieves a 
higher reconstruction quality and a lower computational cost than. At very low sampling rates, 
MNBCS outperforms traditional wavelet-based fusion techniques. 

Introduction 

Image fusion is widely applied in remote sensing, medical imaging, military surveillance, homeland 
security, environmental protection, traffic monitoring, and disaster forecasting. The popular fusion 
techniques are based on multiresolution decomposition schemes such as wavelet transform, curvelet 
transform, and contourlet transform [1]. However, these fusion methods require all information of the 
input images, which is inconvenient for handling large images. Hence, the question arises whether 
fusion can be taken based upon partial information retrieved from the input images without affecting 
the final art. This is exactly the functionality that compressed sensing (CS) theory [2] is offering since 
it allows for reconstructing the fused image from a limited set of samples. Nonetheless, 
state-of-the-art solutions typically adhere to the global compressive sampling approach, which results 
in huge memory requirements and an expensive computational cost. The block-based compressed 
sensing (BCS) [2] enables fast computation and imposes small memory requirements, but it suffers 
from a low reconstruction quality since the BCS defects global features. Hence in this paper, we 
propose a novel compressive fusion method based on BCS and multiscale transforms for retaining 
global features to alleviate the drawbacks of BCS solutions. 
The remainder of the paper is organized as follows. First, in Section 2, we provide a brief description 
of non-uniform BCS in the multiscale transform domain. Then, in Section 3, we describe the fusion 
strategy for multiscale compressive sampling. In Section 4, we provide the reconstruct algorithm of 
fused image, and, in Section 5, we present the experimental results. Finally, conclusions are drawn in 
Section 6.  

Multiscale Non-uniform BCS Sampling 

Consider a vectorized image 1N×∈x   and suppose that an orthogonal basis N N×∈ψ  provides a 
κ -sparse representation of x . In terms of matrix notation, we have =x sψ , in which 1N×∈s   can 
be well-approximated using only N<<κ  non-zero entries. The CS theory states that such a signal x  
can be reconstructed by taking only ( log )M O N= κ  linear, non-adaptive projections with =y xΦ , 
in which 1M×∈y   represents the compressive sampled signal and M N×∈Φ ( M N<< ) is the 
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measurement matrix. Obviously, since the projection is an ill-posed inverse problem, an infinite 
number of solutions exist. In order to reconstruct the κ -sparse signal x , the measurement matrix and 
sparse basis should satisfy the restricted isometric property (RIP) condition [2].  
To increase computational efficiency, the large image can be divided into B B×  blocks and then 
sampled by an identical sampling operator 2

BM B
B

×∈Φ ( 2
BM B<< ). Let 

2 1B
i

×∈x   represent the 
vectorized signal of block i , then the block-based compressed sensing (BCS) measurement is 

i B i=y xΦ , where 1BM
i

×∈y  . Note that BCS is memory efficient since we only need to store an 
2

BM B×  sampling matrix BΦ .As a result, BCS-based techniques can enable fast reconstruction, but 
suffer from reduced reconstruction quality due to their reliance on block-based observations. 
Therefore, it is advisable to deploy BCS fusion and multiresolution-based methods since the global 
features can be accounted at different scale in transform domain. Here, the multiscale transform is 
preferred to choose the 2D discrete wavelet transform (DWT) operator N N×∈Ψ  due to its fast 
implementation. Assume that 1N×∈s   are the vectorized coefficients of DWT decomposition of the 
image 1N×∈x   with L  levels, i.e., =s xΨ . For the 2D representation of DWT decomposition s , 
suppose that the DWT coefficients in subband { }, ,j H V D⊂  at level l  are divided into l lB B×  

blocks and then sampled with a level-dependent sampling operator 
2

l lM B
l

×∈Φ ( 2
l lM B<< ). For 

convenience, let subscript v  represent the index set { , , }l j i , and 
2 1lB

v
×∈s   denote the vectorized 

coefficients of block i  in subband j  at level l , we get 

v l v=y sΦ                                                                                                                                    (1) 
where 1lM

v
×∈y   is the multiscale BCS sampling at index { , , }v l j i=  for image x , and lM  is the 

number of samples. The ratio between lM  and 2
lB  is the sampling ratio, i.e., the subrate lc . For the 

measurement matrix, the structurally random matrix (SRM) [3] is employed because it can provide 
optimal sampling number and better recovery for block processing. 
Since coefficients from various decomposition levels contribute differently to the recovery quality, 
recovery may be enhanced by non-uniform subrates for different subbands. As such, a larger subrate 
can be attributed to the subband contributing more significantly to the recovery quality, and vice 
versa. For convenience, let the level 0l =  correspond to the lowest-frequency subband of DWT 
decomposition. As a result, the overall target subrate c  is 

,
0 1

1 ( )
lJL

l l j
l j

c c n
N = =

= ∑ ∑ ,                                                                                                                       (2) 

where L  represents the number of scales, N  is the number of total pixels, lJ  is the number of 
subbands at level l , and ,l jn is the number of coefficients in subband j  at level l . Since such kind of 
compressive sampling results in non-uniform sampling for different levels, we termed this kind of 
compressive measurements as multiscale based non-uniform BCS samples (MNBCS) in the paper. 

Compressive Fusion Rules 
Traditionally, the multiscale decompositions of the input images are fused by linear weighting and 
maximum absolute value, which badly preserve the edge characteristics since they operate on single 
coefficients. For preserving the edge characteristics, the local characteristic fusion is introduced. On 
one hand, for MNBCS of the sparse approximation coefficients, the criterion of maximum local 
energy is introduced for fusion. On the other hand, the maximum local variance rule is employed for 
MNBCS sampling of the detail coefficients. Therefore, the fusion is determined by the neighboring 
MNBCS samples in a particular subband, which can well preserve the edge characteristics. 
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Reconstruction after fusion 
The final fused image can be reconstructed after the MNBCS samplings have been fused. For CS 
reconstruction, a number of methodologies have been proposed such as linear programming, gradient 
projection sparse reconstruction (GPSR), iterative greedy methods, and iterative thresholding 
methods [3]. However, these methods are always of high computational complexity or low recovery 
quality[4]. The iterative soft-thresholding projection (ISTP) [5] is capable of fast reconstruction with 
good quality. Therefore, we employ ISTP in our solution. We define the iterative soft-thresholding 
function as 

( ) 1 ( )( , , )n nS −= wθΨ Θ ΨΘ ,                                                                                                            (3) 

where ( )nθ  is the n -th iteration of the multiscale coefficients, N N×∈Θ  is a directional transform 
operator for thresholding filtering. In equation (6), ( )n

w denotes the thresholding estimation of the 
directional coefficients ( ) 1 ( )n n−= w θΘΨ , in which ( )n

θ  is the block-based iterative projection of ( )nθ  
on a convex set. For iteration ( )n

vθ  at an arbitrary index v , the iterative projection on a convex set is 

defined by ( ) ( ) ( )( )n n T n
v v l v l v= + − Yθ θ θΦ Φ .  

Results 

The recovery performance of ISTP method with MNBCS is firstly examined. For the PAN and MS 
images shown in Figure 1, both having a size of 1024×1024 pixels, are decomposed by a 3-level 
DWT and sampled at a subrate of 0.25. The normalized iteration error of the ISTP, and peak 
signal-to-noise ratios (PSNRs) at various subrates for MNBCS and BCS is given in Figure 2, which 
implies that the computational efficiency and recovery quality of ISTP with MNBCS outperforms 
than that with BCS.  

   
Figure. 1. The original PAN (left) and MS (right) images 

 
Figure. 2. The iterative errors (left) and PSNRs of the recovery image (right). 
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Figure. 3. Fusion results of MNBCS (left), BCS (middle), and DWT (right). 

For field remote-sensing images, Figure 3 show fused results the MNBCS (left), BCS (middle) and 
conventional DWT (right), respectively. Additionally, the quantitative analysis of these fused images 
is given in Table 1. The utilized metrics include the mean value (MV), the standard deviation (STD), 
the information entropy (IE) and the average gradient (AG). Clearly, compressive fusion with local 
features produces more convincing results in STD, IE and AG than that with BCS, which shows 
smaller difference in values of quantitative analysis with that of traditional DWT fusion. 

Table 1. Quantitative analysis for different fusion images 
Method      MV        STD      AG        IE  
MNBCS    88.78     55.95     3.94      2.30       
BCS        101.49     50.19     3.46      2.29        
DWT        88.78     56.14     4.32      2.30 

Conclusion 

In this paper, we presented a compressive fusion strategy with MNBCS for remote-sensing imagery, 
which accounts for global image features. Numerical results illustrate that iterative soft-thresholding 
projection in combination with MNBCS achieves a better reconstruction quality at a lower 
computational cost than that based on BCS approach. The results of field test demonstrate that the 
proposed method produces comparable fusion results with traditional DWT-based fusion while 
requiring a smaller number of samples.  
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