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Abstract. This paper deals with the global existence and blow-up to nonnegative solution of a 
degenerate parabolic equation with time dependent coefficients under homogeneous Dirichlet 
boundary conditions. We establish the results on global existence and blow up solution to the 
system. 

Introduction 
   In this work, we consider the following degenerate parabolic equation with time dependent 
coefficients under homogeneous Dirichlet boundary condition 
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Here NR∈Ω is a bounded domain with smooth boundary Ω∂ , m>1, p>0. f(t) is a positive 
bounded continuous function with for any 0≥t . The initial value )(0 xu is nontrivial nonnegative 
continuous function and vanishes on Ω∂ .  
   Global existence and singularity analysis of the solutions to the nonlinear parabolic equation 
have been investigated in the past decade, please see the famous surveys [1,2].Many physical 
phenomena have formulated into similar mathematical models(see[2,3,4,5,8,9]). 
   In [8], Payne and Philippin have considered the linear diffusion case, namely 1=m .However, 
the degenerate diffusion makes the present problem more complicated and takes more essential 
difficulties here. 
   The purpose in this paper is to investigate some sufficient conditions to the global existence and 
nonexistence to the solution to the boundary value problem (1). We would like to refer some results 
on blowup solutions to the degenerate parabolic equations and system in [2,6,7] and references 
therein. 

Global solution for the problem (1) 
   In this section, by constructing some global upper solution, we establish the global existence of 
the solution of problem (1). 
 
Theorem 1. If mp <  and ):()( constkktf ≤ , then every classical solution to the problem (1) is 
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global. 
 
Proof: Obviously, if mp <<0 , then there exists a positive constant l  such that 10 << ml , 

0>− plml . 
   Now, we construct supersolution which is bounded for any 0>T . Let )(xϕ be the solution of 
the following elliptic problem 





Ω∂∈=
Ω∈=∆−

.,0)(
,,1)(

xx
xx

ϕ
ϕ

                             (2) 

Denote )(max xC ϕ
Ω

= . Namely, Cx ≤≤ )(0 ϕ . 

   We define the function ),( txu  as 
,)]1)(([),( lxKtxu += ϕ                             (3) 

where l  satisfy 1<ml  and 0>K  will be fixed later. Clearly, ),( txu  is bounded for any 0>t . 
Thus, we have 
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and  
.)]1([)]1)(([),()( plplp
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As 0>− plml , we can choose K  sufficiently large that 1KK >  and  
 ).())](1([ 0 xuxK l ≥+ϕ                                (6) 

Now, it follows from (3)-(6) that ),( txu  defined by (2) is a positive supersolution of problem (1). 
Hence ),(),( txutxu ≤  by comparison principle, which implies ),( txu  exists globally.        □   

Blow-up solution for the problem (1) 
   In this section, we focus on the blow-up solution of problem (1). 
 
Theorem 2. If mp ≥  and 0)(inf: >=

Ω
tfk , then every classical solution to the problem (1) blows 

up in finite time. 
 
Proof: Due to the requirement of the comparison principle in problem (1) that we will construct 
blow-up subsolutions in some subdomain of Ω  in which 0),( >txu . Some ideas borrow from the 
work [4] by Du.  

Let )(xψ  is a nontrivial nonnegative continuous function and vanish on Ω∂ . Without loss of 
generality, we assume that Ω∈0  and 0)0( >ψ .  

We will construct a blow-up subsolution to complete the proof. 
    Set  
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where µ,l  and 0>T  are be determined later.  
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12

)(0
3Rr ≤≤ω  and )(rω is nonincreasing since 0

2
)()( ≤

−
=′ Rrrrω .  

    Note that  
supp ,),0())(,0(),( Ω⊂⊂−=⋅ µµ RTBtTRBtu                   (8) 

for sufficiently small 0>T . 
    Obviously, ),( txu  becomes unbounded as Tt → at the point 0=x . 
    Calculating directly, we obtain 
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notice that 0>T  is sufficiently small. 
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Hence  
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   Case2: If Rr
N
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≤<
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, then 
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   If 1>≥ mp , then there exist positive constant l , such that 1)1( >− lm .  
Thus, we get  

12,1 +>++>≥ lmllmlpl m  
for all 0>µ . 
   Hence, for sufficiently small 0>µ and 0>T , (8) holds. And (11)-(12) imply that 

,0),()(),(),( ≤−∆− txutftxutxu pm
t                                (11) 

where ),0())(,0(),( TtTRBtx ×−∈ µ . 
   Since )(xψ  is a nontrivial nonnegative continuous function and 0)0( >ψ , there exist two 
positive constants ρ and ε such that εψ >)(x for all ),0( ρBx∈ . Choose T small enough to 
insure ),0())(,0( ρµ BtTRB ⊂− , hence 0),( ≤txu  on ),0())(,0( TtTRB ×−∂ µ .  
   From (8), it follows that )()0,( xMxu ψ≤ for sufficient large M . By comparison principle, we 
have ),(),( txutxu ≤  provided that )()(0 xMxu ψ≥ , which implies that the solution ),( txu  of 
problem (1) blows up in finite time.                                                  □ 

1594



 

Remark 
   With aid of the differential equality, we can establish lower and upper estimate to the blow up 
time in our future works. 
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