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Abstract. This paper presents a novel approach to improve the accuracy of auxiliary particle 
probability hypothesis density filter without the need of clustering step. In most cases, the states of 
target can be seen as combinations of linear components and non linear ones. The new approach 
separates the two different components and then adopts auxiliary particle filter (APF) and Kalman 
filer to estimate the non linear parts and linear parts. After the update step it extracts the multi-target 
states via the predict particles and their updated weights which correspond to each measurement. The 
simulation results illustrate the effectiveness of the presented approach.  

1.Introduction  

The aim of multi-target tracking (MTT) [1] is to estimate the states of targets from a set of 
observations with uncertainty. It is a difficulty in the field of target tracking. On the target side the 
number of target is usually unknown in the whole process, any target can appear or disappear at any 
moment. One target may spawn when it is moving. On the other hand, the sensor is not able to detect 
all targets at one moment, and sometimes irrelevant objects could be treated as targets in a scanning 
cycle, so inevitably many false detections are mixed in the observations. The possibilities above 
increase the complexity of MTT problem. Before the application of Finite Set Statistics (FISST) the 
classical approaches such as Multi-hypothesis Tracking (MHT) [2] and Joint Probabilistic Data 
Association filter (JPDAF) [3] were widely utilized to solve such difficulties. However, the 
shortcomings of these approaches are also obvious because they require the knowledge of the 
expected number of targets, and the data correlation process determines their performance directly. In 
order to avoid the data correlation process Mahler proposed the FISST and it has been proven to be an 
effective way especially when the number of targets is unknown. To reduce the complexity further, 
the Probability Hypothesis Density (PHD) filter was proposed by Mahler [4]. It is an approximate 
alternative filter to the optimal Bayesian multi-target filter. PHD filter predicts and updates the first 
moment of the multi-target posterior constantly to get the number of targets at each moment. Many 
implementations of this filter have been proposed, Particle Filtering (PF) approach [5-7] is one of the 
most widely used methods.  

PF provides a valid solution for the estimation of posterior when the system state is non linear. 
However, when the dimensions of system state increase, the computational complexity of PF also 
increases with it, this could cost huge amount of computational resource and time. In many 
applications not all the dimensions of target state are non linear. In this case the Rao-Blackwell 
theorem provides a solution for reducing the computational complexity of PF. A typical mixed 
algorithm is called Rao-Blackwellized Particle filter (RBPF). RBPF combines Kalman filter (KF) 
with PF, thus it creates a parallel filter banks. It uses PF to estimate the non linear components and KF 
to deal with the linear ones. A lot of research have been done to develop RBPF filters. With respect to 
the PF, RBPF can lower the dimensions of system and increase the estimation 
accuracy[8,9,10,11,12].  

Though PF has been proven to be an effective method to implement PHD filter, calculating the 
states of targets from a set of particles is a difficulty for Particle-PHD (P-PHD, also known as 
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SMC-PHD) algorithm. In most cases the K-Means clustering method is widely applied[13,14], 
however, it usually takes a lot time for K-Means to locate the clustering center and extract the peaks, 
and the clustering performance is poor. In order to avoid the clustering step Ristic proposed a free 
clustering method to implement PHD algorithm through auxiliary particle filtering (APF) 
implementation [15], the results show that this new algorithm improves accuracy of P-PHD greatly.  

The main contribution of this paper is to present a novel implementation of PHD filter by applying 
RBPF in the existing free clustering P-PHD filter to track multi-target. In section 2 we briefly recall 
the random finite set and the PHD filter. In section 3 the concrete implementation steps of the 
presented approach is introduced. We compare the performance of the presented approach with 2 
other improved P-PHD filters, with and without K-Means clustering method in section 4. In section 5 
we draw a conclusion according to the simulation and end the paper with it.  

2.Background 

2.1Multi-target state and measurement model 
The state of an individual target at moment k  can be described by set X  in state space  . Assume 

that at moment k  there are ( )N k targets scattering in state space, and each of them is located at 

( )1k k N kx x, ,, ..., , then the multi-target state are represented by the following finite set: 

( ){ } ( )1k k k N k F= ∈X x x, ,, ...,  .                                                                                                               (1) 

Similarly, the measurement of individual target at moment k  can be described by set Z in 
measurement space  . At moment k  the sensor reports ( )M k  measurements ( )1k k M kz z, ,, ..., , then the 
measurement set can be written as: 

( ){ } ( )1k k k M k F= ∈Z z z, ,, ...,  .                                                                                                               (2) 

In the process of state transition any target may appear at any moment, meanwhile the survival targets 
may disappear. So the number of target is always uncertain. As for the measurements, since not all 
existing targets at each moment will be detected, and the observation set may include false detections. 
The uncertainties above cause the number of elements of both sets kX  and kZ  are variables over time. 
They are also called random finite set (RFS). 

The RFS of the multi-target state kX  at moment k  is represented by the union  

( )( )1 1kk k k kS Γ
−∈ −= ∪ ∪x XX x| ,                                                                                                                 (3) 

where ( )1k kS −| x is the RFS of targets which survive from moment 1k −  to k , kΓ  is the birth targets 
which appear at moment k . The RFS measurements can be represented as  

( )
kk k k k= k∈ ∪ Θ ∪ x XΖ x ,                                                                                                                   (4) 

where ( )k kΘ x  is the RFS of measurements that sensor reports at moment k , kk represents the false 
detections at moment k .  
2.2 The PHD filter 

PHD is the first-order moment of the posterior distribution of RFS kX . The integral value of the 
PHD over a specific region in the state space is the expected number of targets within this region. 
Like the multi-target Bayesian filter, the PHD recursion consists of prediction and update step. 
Assume ( )k k kυ x|  is the PHD which associated with the posterior ( )1k k k kp :X Z| |  , then the prediction 
step of PHD filter can be written as : 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1k k k k S k k k k k k k k kυ Γ p f Γ  υ d− − − − − − − − = + + ∫x x x x x x x x x| || | ,                                                   (5) 
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where ( )1|k kf −x x  is the transition density of multi-target , ( )1S kp −x  is the probability which target 
survive from moment 1k − to k , ( )1k kΓ −x x|  represents the intensity function of RFS of targets 
spawned from 1k −  to k ,and ( )kΓ x  is the intensity function of birth of new targets. Then the update 
step of PHD filter can be represented as 

( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
1

1

1
k

k k k D k k
k k k k k k D k

D k k k k k k

υ p g
υ υ p

c p g υ dλ
−

−
∈ −

= − +
+

∑
∫z Z

x x z x
x x x

z x z x x x
|

| |
|

|

|
,                                         (6) 

where ( )D kp x  is probability of detection of state kx , λ  is the average number of false detections each 
moment and ( )c z  is the probability distribution of every false detection, ( )| kg z x  is the measurement 
likelihood. The integral of ( )k k kυ x|  over a region S  is the expected number of targets in S . 

3.The Rao-Blackwellized Free Clustering P-PHD Filter  

3.1Recall of Rao-Blackwellized particle filtering   
In practical applications the dimension of multi-target state is higher than that of measurement. In 

this situation the multi-target state kX  can be divided into non linear part n
kX  and linear part l

kX , their 
dimensions are nm and lm , then the state kX  can be written as ,

Tn l
k k k =  x x x . Respectively, the state 

transition equations of the two components are as follows: 

( )1 1
n n n n l n
k k k k k kf − −= + +x x F x w ,                                                                                                                 (7) 

( )1 1
l l n l l l
k k k k k kf − −= + +x x F x w ,                                                                                                                  (8) 

where ( )n
kf ⋅  is a function from IR

nm to IR
nm , n

kF  is a n lm m×  matrix which is connected with the parts 

1
l
k−x  and acts on 1

n
k−x , l

kf  and l
kF  are defined similarly. The measurement equation can be written as:  

( )n n
k k k kh= +z x v .                                                                                                                                (9) 

The non linear measurement this paper mainly focuses on is Rang-Bearing tracking, then kh  is:  

( ) ( ) 2 2
T

kh arctan / , = + x y x x y .                                                                                                     (10) 

The connection between their noise vector is as follows:  

( )
00

; 0 ; 0
0 0 0

n nl
n k k
k

Tl nl l
k k k
n
k k

            ⋅                

Q Qw
w Q Q
v R

  ,                                                                                               (11) 

where ( )20,σ  means Gaussian distribution with zero mean and variance σ , the ,n l
k k  w w and n

kv  at 
all moments are independent.  

When all the state components of system are non linear, the posterior probability density 
( )1k kp :X Z|  can be calculated via PF. When the state equation can be separated as previous situation, 

according to the Bayesian theorem, l
kX  can be separated from ( )1k kp :X Z|  and thereby be calculated 

separately, then ( )1k kp :X Z|  can be written as: 

( ) ( ) ( )1 1 1, | | , |l n l n n
k k k k k k k kp p p=: : :X X Z X X Z X Z ,                                                                                     (12) 

in which ( )1|n
k kp :X Z  is calculated via PF, and ( )1| ,l n

k k kp :X X Z  can be computed via KF in the sense of 
minimum variance.   
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3.2 Implementation of Rao-Blackwellized Free Clustering P-PHD Filter 
There are three main drawbacks in P-PHD algorithm. First, it needs to spread large amount of 

particles in the state space because the probability of targets appear anywhere in it is equal, the 
particles together represent the birth density. This increases the consumptions of computation 
resources. Second, after update step, P-PHD has to cluster all the updated particles via K-Means 
technique, the purpose is to make every particle correspond to its target and get state estimation 
values from different particle swarms. However, the precision cannot be guaranteed. Third one is that 
the number of target estimation gained from the particles’ weights is unstable. To overcome these 
disadvantages, Ristic proposed an APF based approach to implement P-PHD. In his method, the birth 
density is described by a bunch of particles generated by measurement at each moment, so the filter 
does not need to spread particles in state space where targets do not appear, this undoubtedly reduces 
the number of particles, and thus save the running time. In the update step, the filter obtains state 
estimations directly from updated weights of all particles, their values change correspond to each 
measurement. This increases the accuracy of state estimation. Since the participations of 
measurement generated newborn particles, the cardinality estimation is more stable compare to 
P-PHD.  

The following section introduces the approach to plug RBPF into the improved P-PHD algorithm 
which introduced above, so as to present a new implementation of P-PHD filter.  
3.2.1 Prediction: 

At the moment k , in APF based P-PHD filter, the input persistent particle set is described by 
{ } 1

1 1 1

kPi i
p ,k p ,k i

, −

− − =
w x ,where 1 1k P kP N n− −=  is the number of all persistent particles, pN  is the number of 

persistent particles for each target, 1kn −  is the estimated number of target number from last moment. 
The newborn particle set from 1k −  is generated by measurements, they can be written as 
{ } 1

1 1 1

kBi i
b ,k b,k i

, −

− − =
w x , 1

i
b ,k−w  can be computed according to Eq. 28, 1 1k b kB N m− −=  is the number of all newborn 

particles, bN  is the number of newborn particles generated from each measurement, 1km −  is the 
number of measurement. Then merge the two particle set to one, we can get the persistent particle set: 

{ } { } { }1 1 1

1 1 1 1 1 11 1 1

k k kL P Bi i i i i i
k k p ,k p ,k b,k b,ki i i

, , ,− − −

− − − − − −= = =
= ∪w x w x w x ,                                                                              (13) 

then the persistent PHD ( )1 1 1k k kυ − − −x| can be described by their weights: 

( ) ( )1

1
1 1 1 1 11|

k
i
k

L i
k k k k ki
υ δ−

−
− − − − −=

≈ ∑ x
x w x ,                                                                                                       (14) 

where ( )
1

1i
k

kδ
−

−x
x  is the Dirac delta function concentrated at the value 1

i
k−x . Since every particle 

contains linear part and non linear part, the persistent particles 1
i
k−x  can be decomposed as 

, ,
1 1 1[ , ]i n i l i

k k k− − −=x x x . Plug ,
1

n i
k−x  into the state transition Eq. 7 and get ,

1
n i
k|k−x ,the weights 1

i
k−w  change as 

follows: 

( )1 1 1
i i i
k|k S k|k kp− − −=w x w ,                                                                                                                     (15) 

where ( )1
i

S k|kp −x  is survival probability for each particle. Since the linear part ,
1

l i
k−x  corresponds to 

linear Gaussian system, the predicted PHD becomes:  

( ) ( ) ( )1

1
1 1 1 11

;,
, ,

| | | |
k

n i
k

Li i n l i l i
k k k k k k k k k ki
υ δ−

−
− − − −=

≈ ∑ x
x w x x P ,                                                                                  (16) 

where 1
l i
k k−x ,

|  is the average value of linear part, 1
l i
k k−P ,

|  is the relevant covariance. The two parameters 
are obtained via KF, their calculation formulas are as follows: 

( ) 1, ,l i nl n n i
k k k k k

−
= −A F Q Q F ,                                                                                                                 (17) 
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( ) ( )
1

1 1
, , , , ,T Tl i n i n i l i n i n

k k k k k k k

−

− −
 = +  

K P F F P F Q ,                                                                                             (18) 

( ) ( ) ( ) ( )1

1
, , ,T Tl i l nl n nl n i l i

k k k k k k k k k k

−

−
 = − + − P Q Q Q Q A I K F P A ,                                                                    (19) 

( ),
1 1 1 1 1 1

, , , ,
| | | |

l i l i n i n i l i
k k k k k k k k k k− − − − − −= + −x x K x F x ,                                                                                               (20) 

( ) ( )1

1 1 1 1 1 1 1
l i l i l i n i nl n n i n i n i
k k k k k k k k k k k k k k kf f

−

− − − − − − −= + + −x A x x Q Q x x

, , , , , , ,
| | | | | ,                                                                   (21) 

where l i
kF , , l i

kf
, , n i

kF , , n i
kf

, are defined in section 3.1. Once the linear component 1
l i
k k−x ,

|  and its 
covariance ,l i

kP  are obtained, merge 1
l i
k k−x ,

|  together with 1
n,i
k|k−x and get the predicted persistent particle 

set { } 1

1 1 1

kLi i
k|k k|k i

, −

− − =
w x ,where 1 1 1

i n ,i l ,i
k|k k|k k|k,− − − =  x x x .  

3.2.2 Update:  
In update step, the weights of persistent particles are updated according to Eq. 22: 

( )( ) ( ) ( )
( ) ( ) ( )

1

1 1 1
1 1

1 1 1
1

1 | | |
| | |

| | |

|

|
k

k

i i i
k k k k k D k ki i i

k k k k D k k L
i i i
k k k k k D k k

i

g p
p

c g pλ
−

− − −

− −
∈

− − −
=

= − +
+

∑
∑z Z

w z x x
w w x

z w z x x
,                                                 (22) 

where 11 ki L −= , ..., , ( )1|
i

D k kp −x  is the detection probability for each particle, ( )1
i

k k kg −z x ||  is the likelihood 
function, λ  and ( )c z  are introduced previously. For every measurement, compute the updated 
weight correspond to each one of them: 

( ) ( )
( ) ( ) ( )

1

1 1 1

1 1 1
1

| | |,
|

| | |

|

|
k

i i i
k k k j k k D k ki j

k k L
i i i

j k k k j k k D k k
i

g p

c g pλ
−

− − −

− − −
=

=
+∑

w z x x
w

z w z x x
,                                                                                 (23) 

where 1 kj m= , ..., . Once i j
k kw ,

|  is obtained, for each measurement j , compute the following sum 

1

1

kL
i j

j k k
i

−

=
∑W = w ,

| .                                                                                                                                  (24) 

If j η>W , then it can be considered as valid, the threshold η  in this paper is 0.8. To all the valid jW , 
state estimation is computed as 

1

1
1

kL
i j i

k j k k k k
i

−

−
=

= ∑x w x,
, | |ˆ .                                                                                                                           (25) 

The sum of i
k kw |  is the expected number of current target number estimation 

1

1

kL
i

k k k
i

N
−

=
∑= w | .                                                                                                                                   (26) 

Compute the round numbers kn  near kN , its product with pN  is the number of resampled particles. 

Any resampling algorithm can be used here to get new persistent particle set { }
1

kPi i
p ,k p ,k i

,
=

w x . Generate 

k b kB N m=  newborn particles { }1 1 1

kBi i
b ,k|k b,k|k i

,− − =
w x  from the current measurements, where 1 1i

b ,k|k b k/ N m− = ⋅w , 
they can be updated as: 

( ) ( ) ( )
1

1

1 1 1 1
1 1

k k
k

i
b k ki

b k k B L
i i i i
b k k k k k k k k k

i i
c g Pdλ

−

−

∈
− − − −

= =

=
+ +

∑
∑ ∑z Z

w
w

z w w z x x

, |
, |

, | | | ||
.                                                             (27) 

Then resample from the set { }1 1

kBi i
b ,k|k b,k|k i

, − =
w x  to get new newborn particle set { }

1

kBi i
b ,k b,k i

,
=

w x , where 
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1

k

i
b ,k|ki

b ,k B
i
b,k|k

i=

=

∑

w
w

w
.                                                                                                                                (28) 

4.  Simulations  

4.1 Simulation Setup 
This section compares the tracking performance of the presented approach with two APF based 

P-PHD filters, with and without K-Means clustering step (they are respectively referred to as 
RBAP-PHD, AP-K-MEANS-PHD and AP-PHD for convenience sake in this section). The range of 
tracking scenario is set as [ ] [ ] 21000 1000 1000 1000, , m− × − , the sensor is still and located at origin of 
coordinates. Sampling period is =1sT  , the total sampling number is 50. The measurement noise is 
Gaussian white noise with zero mean, measurement noise covariance is 2 2diag ,b rσ σ  ∑ , where 

=0.1bσ
 , 2r mσ =  are standard deviations of Range-Bearing measurement. The probability of detection 

is  0 98Dp .= , the survival probability is 0 98Sp .= . The number of clutters per scan is 5, clutter density 
is  ( )-1-47 96 10cλ . rad m= × ⋅ . The number of particles for tracking each target is N 100p = , every new 
measurement generates N 10b =  newborn particles. OSPA distance technique is used to compare the 
tracking accuracy of filters, it can evaluate both the state estimation and cardinality estimation jointly. 
Its parameters are 200c m= , 1p = . The software and hardware conditions for experiment is MATLAB 
2012b, Windows 7, AMD A8-6500 3.5GHz, RAM 4GB. Assume 7 targets are moving in the state 
space, they appear and disappear at different moment. The models of their tracks are NCVM. State 
transform matrix and noise covariance matrix are  

2

1 T
=

0 1
 

⊗ 
 

F I , 

3 2

22

T T
3 2=

T T
2

 
 
 ϖ ⊗
 
  

Q I ,                                                                                                (29) 

where ⊗  is Kronecker product, ϖ = 0.05.  
 
4.2 Experiments  
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Fig.1. Ground truth: X and Y components of           Fig.2. Ground truth: positions of real targets, 

  real targets, measurements and output of                    measurements and output of presented  
presented algorithm against time                                                  algorithm 

Fig.1 and Fig.2 illustrate the output of the presented approach compare to the real multi-target 
tracks. We can see the estimation points are scattered close to the real tracks. Though at some 
moments the filter has no output for some individual targets, this may caused by the imperfection of 
the sensor and the algorithm itself, the overall tracking effect is good, and the filter can track targets at 
different positions in state space.  
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Fig.3. Tracking performance comparison                            Fig.4. Tracking performance of 

for position OSPA                                                        cardinality estimate 
Fig.3 and Fig.4 are results over 100 Monte Carlo runs. Fig.3 shows the OSPA distance 

comparisons for the three filters. Both the AP-PHD and RBAP-PHD outperform the 
AP-K-MEAN-PHD. This is because the two filters obtain estimates from the updated weights of 
persistent particles, and the values of these weights change correspond to all the measurements at 
each moment, so the individual estimate is distributed to its own target automatically. The result of 
this approach is much more precise than that of K-Means clustering algorithm. Other than that, the 
black solid line is lower than the blue one at most moments, meaning RBAP-PHD is more accurate 
than AP-PHD. It’s because RBAP-PHD does Kalman filtering to linear parts of every particles, this 
makes particles scatter more concentrated near the real targets, hence the OSPA distance is smaller.  

Table 1. The average values of OSPA and running time comparison  
Average values RBAP-PHD AP-PHD AP-K-MEANS-PHD 

OSPA[m] 30.445 32.012 56.420 
Time[s] 0.501 0.489 0.510 

 
Table 1 illustrate the average values of OSPA distance over the 50 steps and average running time 

for each step of the three filters. AP-K-MEANS-PHD performs the worst, and RBAP-PHD improves 
the accuracy by about 1.6m averagely compare to AP-PHD. However, since every particle is 
processed by KF, its average running time is longer than that of AP-PHD. For obtaining the similar 
precision, we add the persistent particle number to 220 for AP-PHD. After 100 Monte Carlo runs, the 
average OSPA value of AP-PHD is 30.475m, which is close to RBAP-PHD, but its average running 
time per step increases to 1.018s. On the premise of similar tracking precision, RBAP-PHD saves 
almost half of the running time relative to AP-PHD.  

Fig.4 shows the cardinality estimation of all three filters. Since their essence is APF and their 
implementation ways are identical, so their cardinality estimation results are very similar. The three 
filters can detect and report newborn targets in a very short of time and respond quickly to target 
death.  

5.Conclusion 
This paper presents an improved free clustering P-PHD filter to enhance the tracking precision. 

Inspired by the Rao-Blackwell theorem, the new PHD filter combines KF and APF to estimate the 
linear and non linear components in multi-target state. The simulation result show that state 
estimation obtained from updated weights of particles is more accurate than clustering particles via 
K-Means algorithm, and the presented approach also outperforms the existing APF based P-PHD. 
Though the presented improved free clustering P-PHD filter needs more time to complete tracking 
when the numbers of particles are identical to APF based P-PHD without clustering step, the latter 
requires more particles and about twice as much time to reach similar precision. Rao-Blackwellized 
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free clustering P-PHD filter increases efficiency of the existing free clustering APF based P-PHD 
filter without losing the reliability of target number estimation.  

Acknowledgements 

This work is supported by National Natural Science Foundation of China (61370037,61005026)，
Gansu Province Basic Research Innovation Group Project(1506RJIA031)，Gansu Provincial Science 
and Technology Planning of China (1506RJZA090) and Foundation of Higher Education of Gansu 
Province, China (2014A-035). 

References 

[1] Bar-Shalom Y, Willett P K, Tian X. Tracking and data fusion[J]. A Handbook of Algorithms. 
Yaakov Bar-Shalom, 2011. 

[2] Blackman S S. Multiple hypothesis tracking for multiple target tracking[J]. Aerospace and 
Electronic Systems Magazine, IEEE, 2004, 19(1): 5-18. 

[3] Mušicki D, Evans R. Joint integrated probabilistic data association: JIPDA[J]. Aerospace and 
Electronic Systems, IEEE Transactions on, 2004, 40(3): 1093-1099. 

[4] Mahler. Multitarget Bayes filtering via first-order multitarget moments[J]. Aerospace and 
Electronic Systems, IEEE Transactions on, 2003, 39(4): 1152-1178. 

[5] Vo B N, Singh S, Doucet A. Sequential Monte Carlo methods for multitarget filtering with 
random finite sets[J]. Aerospace and Electronic Systems, IEEE Transactions on, 2005, 41(4): 
1224-1245. 

[6] Vo B N, Singh S, Doucet A. Sequential Monte Carlo implementation of the PHD filter for 
multi-target tracking[C]//Proc. Int’l Conf. on Information Fusion. 2003: 792-799. 

[7] Sidenbladh H. Multi-target particle filtering for the probability hypothesis density[J]. arXiv 
preprint cs/0303018, 2003. 

[8] Schön T, Gustafsson F, Nordlund P J. Marginalized particle filters for mixed linear/nonlinear 
state-space models[J]. Signal Processing, IEEE Transactions on, 2005, 53(7): 2279-2289. 

[9] Karlsson R, Schön T, Gustafsson F. Complexity analysis of the marginalized particle filter[J]. 
2004. 

[10] Petetin Y, Desbouvries F. Marginalized PHD Filters for multi-target filtering[C]//Information 
Science, Signal Processing and their Applications (ISSPA), 2012 11th International Conference 
on. IEEE, 2012: 419-424. 

[11] Karlsson R, Gustafsson F. Recursive Bayesian estimation: bearings-only applications[C]//Radar, 
Sonar and Navigation, IEE Proceedings-. IET, 2005, 152(5): 305-313. 

[12] Särkkä S, Vehtari A, Lampinen J. Rao-Blackwellized particle filter for multiple target 
tracking[J]. Information Fusion, 2007, 8(1): 2-15. 

[13] Clark D E, Bell J. Multi-target state estimation and track continuity for the particle PHD filter[J]. 
Aerospace and Electronic Systems, IEEE Transactions on, 2007, 43(4): 1441-1453. 

[14] Tang X, Wei P. Multi-target state extraction for the particle probability hypothesis density 
filter[J]. IET radar, sonar & navigation, 2011, 5(8): 877-883. 

[15] Ristic B, Clark D, Vo B N. Improved SMC implementation of the PHD filter[C]//Information 
Fusion (FUSION), 2010 13th Conference on. IEEE, 2010: 1-8. 

1629




