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Abstract. Considering that it’s difficult to dealing with symbolic expressions which are stored in 
the form of strings, we put forward an idea that the symbolic expression is stored in a right-thread 
binary tree, and we minimize the right-thread binary tree so that the symbolic expression could be 
simplified. For a right-threaded binary tree that represents a symbolic expression, we traverse its 
nodes in order of its corresponding postfix expression. During the traversal, we simplify the 
expression. The Algorithm not only minimizes the tree, but also transforms the tree into an 
expression string. Experiments show that most symbolic expressions can be simplified by the 
method. 
   
As we all know, expression simplification is one of the most fundamental functions for any 
symbolic computation software and it’s also the core of the software[1]. There are many studies and 
algorithms on symbolic expression simplification in the past. However, no general algorithm has 
been found that could simplify a symbolic expression perfectly. So, both algorithm and innovative 
research for data structure about symbolic expression simplification are of enormous significance. 

Taking various functions models into account, this text makes use of people’s thinking pattern 
and skills, and simplify the symbolic expression by minimize the right-thread binary tree during 
LDR traversal. What we get by traversing the right-thread binary tree in order of LDR is the 
symbolic expression’s postfix expression (also called Reverse Polish Expression). When dealing 
with a symbolic expression in the form of postfix expression, we can take no account of the priority 
of operators. So when it turns to an operator, we can directly take out front operands to operate. As 
a result, the LDR traversal of the tree makes it possible we simplify symbolic expressions. The text 
will explain the algorithm in detail. 

1. Relevant Data Structure 
What data structure we choose to represent the symbolic expression will affect the simplicity of 

the algorithm. As is known to all, any symbolic expression can be regarded as representations of 
tree structures[2], not as one- or two-dimensional configurations of symbols. For example, the 
symbolic expression ( )1 2 3*y x sin x= + + +  has the tree representation as follows. 
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Fig.1 Symbolic expression represented by a tree  
Traverse the binary tree in post order and then we get the postfix expression of the symbolic 

expression[3]. However, it is difficult to traverse a binary tree in post order. So it is important to note 
that, even though the data structure in Fig.1 is similar to a binary tree, we are treating it as a tree. 
There is a one-to-one correspondence between a tree and a binary tree. That is, any tree can be 
replaced by a binary tree and vice versa. In addition, postorder for a tree corresponds to inorder, not 
postorder, for binary trees, and inorder traversal of binary tree is easy[4]. So, we transform the tree in 
Fig.1 into its corresponding binary tree in Fig.2. In order to convenience, we add a node “Y” as the 
root node of the tree. 
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Fig.2 Symbolic expression represented by a binary tree 

For a node, if there is no arrow line pointing to the next node in inorder, add an imaginary line. 
So we build the right-threaded binary tree in Fig.3. 
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Fig.3 Symbolic expression represented by a right-threaded binary tree 

The tree structure for the symbolic expression with which we will be dealing with have nodes 
of the following form[5]: 

LCHILD RCHILD RTAG 
TYPE INFO 

Here RCHILD and LCHILD have the usual significance.. The TYPE field is used to distinguish 
different kinds of nodes: TYPE=0 means that the node represents a constant, and INFO is the value 
of the constant. TYPE=1 means that the node represents a variable, and INFO is the name of the 
variable. TYPE=2 means that the node represents an operator that has only operand. TYPE=3 
means that the node represent a binary operator. And INFO is the name of the operator. Furthermore, 
when a node has a right child, RTAG=0. Otherwise, RTAG=1. 

2. Algorithm Description 
When we deal with symbolic expression evaluation, differential and integral operation, postfix 

expression is used frequently. And right-threaded binary tree is used regularly for its convenience to 
postorder traversal. So, now we assume that a symbolic expression which is not simplified has been 
stored in the form of right-threaded binary tree, and don’t care about how to set up the tree. Then we 
introduce the algorithm of symbolic expression simplification. 

In order to simplify the symbolic expression, we need to traverse each node of the tree in 
postorder. So we traverse the right-threaded binary tree in inorder. When it turns to an operator node, 
we execute following operations:  

1. Rebuild subtrees of the node. 
2. Save the symbolic expression represented by the subtree whose root node is the current 

node. 
In order to realize the algorithm, we introduce some variables, that is P, P1, P2, Q1,  

Q. P is the current node and P1, P2 are respectively P’s left and right child. On one hand, if P 
represents a binary operator, Q1 represents the symbolic expression of P1 subtree, and Q represents 
the symbolic expression of P2 subtree. On the other hand, if P represents a unary operator, P has 
only one child, that is P1. And Q represents the symbolic expression of P1 subtree. 

The algorithm is described as follows: 
S1. [Initialize.] Set P← first(Y) (namely, the first node of the tree in Fig.1 in postorder, which is the 
first node of the corresponding binary tree in Fig.3 in inorder.) 
S2. [Simplify] Set P1←LCHILD (P). If P1≠ Λ , also set Q1←RCHILD (P1). Then perform the 
function simplify (P), which will be described below.  
S3. [Restore link.] If TYPE (P)≥2, which means that P represents an operator, set RCHILD 
(P1)←P2. 
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S4. [Next node]. Set P2←P, P←next (P) ( next(P) is the next node of the right-threaded tree’s 
inorder traversal.), if RTAG(P2)=0 (P2 has a right brother), then set RCHILD(P2)←Q (We 
temporarily destroy the structure of the right-threaded binary tree, so that a link to the expression of 
P2 is saved for future use. So in S3, we restore the missing link.). 
S5. [Over?]. If P≠ Y, return to step S2. Otherwise, Q represents the result of the simplification 
algorithm. 

Now that general steps are listed, we describe the simplify(Node P) function. 
Since simplify(P) minimizes the P subtree, different P nodes are classified as follows: 
 (1). Constant or variable: In this situation, P has no child, and P1, P2, Q1 and Q make no sense.  

( )( )Q Node INFO P← , that is building a new node which represents P’s content. 
(2). Unitary operator (log function, trigonometric function, anti-trigonometric function): 
   If TYPE(P1)=0, which means that P represents a constant, calculate the value of P subtree. The 
value should be stored in Q and replace P’s original value. And then, delete P1, which means that 
the subtree structure has been modified. 
   If TYPE(P2) ≠ 0, which means that P represents a variable or operator. 

( ) ( )( )  (Q Node INFO p INFO Q← + . 
(3). Binary operator: 
   We take plus operator for example to introduce this situation. 
   Define 3 variables namely var, operand and curnode. If P1 and P2 are both constant, add the 
two constants into operand. If P1 or P2 is a variable, add the number of variables into var. If P1 or 
P2 represents “+” or “-“, continue to visit the node’s children and add or subtract their values into 
var or operand. If P1 or P2 presents operator that has higher priority, save the node as variable 
curnode. In the end, build a new subtree to replace P on the basis of the three variables var, operand 
and curnode. And then store the symbolic expression in Q. 
  We summarize the simplification rules and methods to complete the simplify function. So the 
other situations are similar to plus. 

3. Conclusion 
Experiments shows that the algorithm of symbolic expression simplification which is 

accomplished by traversing the right-threaded binary tree can simply deal                        
with primary symbolic expression. Besides, the algorithm can be easily improved through 
expanding the function simplify() to achieve more complicated symbolic expression. Starting from 
people’s thinking pattern and skills, the method that we call function simplify() to simplify each 
node of the expression during traversal is an effective way to simplify symbolic expression. 
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