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Abstract. In this paper, the design methods of cruciform specimen of biaxial tensile testing are 
summarized. In order to study the stress and strain distribution of sheet metal under plastic 
deformation stage, the specimen shape is designed according to the principles of stress–strain 
distribution homogeneous in the center area and stress concentrations in the arms. Based on the 
sample size recommended by the biaxial tensile test international standard tensile properties and the 
mechanical properties of 45 steel, the simulation model was established. The influence and 
regularity of the parameters on the test results are calculated by the finite element method, and the 
optimization is carried out. Optimization results show that thickness of central area can be 
decreased moderately based on a half of the original thickness, and the best value should be 
controlled by 40% to 50%; the outward fillet radius can be increased moderately based on the 
design of slot in arms and thickness reduction in the central area, and the radius value be controlled 
by 2-7% of specimen width. 

1．Introduction 

In recent years, sheet forming by plastic processing, especially for aerial and spacecraft alloys, 
are widely adopted. In an attempt to retrench design cost, the finite element method for calculating 
the deformation of sheet metal has become an almost obligatory step. The accuracy of these 
numerical simulations is contingent on the chosen constitutive model. Focusing on predicting the 
plastic behavior of metals, many investigations have been conducted by MTS or Gleeble thermo 
uniaxial tensile testing machines [1; 2]. However, it has been recognized that many structures are 
usually under multiaxial loading conditions in manufacture. Multiaxial stresses and strains cannot 
be detected by uniaxial data. Under same true strain state, on the basis of stress yield theories, 
certain distinctions exist between the stress obtained from uniaxial loading in a direction and those 
from multiaxial loading in the same direction. Therefore, biaxial tension testing describes 
mechanical properties of materials under multiple loading more precisely than uniaxial tensile 
testing, with the setups being close to actual physical scenarios. 

Biaxial tension testing technique and early cruciform biaxial tension specimen was first proposed 
by Shiratori and Ikegami [3]. However, the area of arms is far less than that of center section, which 
lead the specimen arm to being fractured before the center section reach forming limit under normal 
stress in the test [4]. It is essential to increase the deformation in the center section as far as possible 
while designing according to specimen thickness so that there are more effective data of post yield 
point to fit stress-strain curves and constitutive model that is consistent with the actual material 
properties. With more research on biaxial tension technique, specimen design has been improving 
by leaps and bounds [5]. In 1992, Makinde designed the specimen on the basis of the arm slits and 
thinning in both sides of the central area to increase deformation in the test section [6]. The specimen 
recommended by biaxial tensile test ISO/CD16842 international standard issued in 2014 is designed 
by Japanese expert Kuwabara researching plastic behavior of carbon steel in 1998, but there is 
no processing to the central area [7]. This kind of specimen was widely used in researching on the 
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constitutive mold and forming limit of materials in a very long time [8; 9]. Then M.Merklein 
proposed a design with strips and slots in arms and thinning in only one side of the central area 
based on the above studies [10]. In addition, Wu Xiang-dong and Lionel Leotoing also investigated 
thinned methods of center area in order to research on forming limit of metal sheet [11; 12]. But 
different from plastic, for the research on forming limit, it is unnecessary to consider the stress 
distribution in the test area. Therefore, it is lack of discussion on the shape and size of the specimen 
for the study on the plastic deformation of the metal sheet. With the change of the thickness and the 
fillet radius between arms of the specimen, the test results will be affected. It is in this context, in 
order to provide a theory and standard for the design of cruciform specimen, geometrical shape of 
the specimen was discussed and optimized by using the finite element simulation.  

2. Cruciform specimen design and geometry 

There are at least two principles of designing biaxial tension specimen [13]:  
1, Stress-strain homogeneity within the center section so that we can calculate the stress with 

deviations as less as possible. 
2, Yield has to occur in the test section and stress concentrations to avoid fracturing in arms. 
Based on the above two points, three main methods can be seen as shown in Figure 1: cutting 

a circular groove at the corner area, which can avoid fracture while experiment; reducing thickness 
of the central section, which avoid stress concentration in arms, and thus can increase the 
deformation at the center; the strips and slots in arms reduce the effect of shear stress.  

 
Cut type            reduced section type      strip and slot type 

Fig. 1. Geometry for cruciform type specimen. 
The length and width of ISO/CD16842 international standard specimen with strips and 

slots is 240 mm and 50 mm, respectively. The design for biaxial test has played an important role in 
the research on the stress near the yield. But the extension ratios of the center area are too 
low, therefore the center section of the specimen should be thinned down. There are two 
thinning methods: bilateral thinning and unilateral thinning. For the common thickness (2-3 
mm) specimens, it is very difficult to do bilateral thinning except by EDM which costs a 
lot. Therefore, in this paper, based on the standard length and thickness (2 mm) of ISO/CD16842 
specimen is designed, unilaterally thinned, as shown in Fig. 2. Fillet radius R and thickness of 
central area H, the key dimensions which may have great influence on distribution of forces, are 
discussed. 
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B H= 0.9 mm RA= 1 mm 

 
C H= 1.1 mm RA=1 mm 

Fig. 5. Mechanical strain and shear stress distributions for different thickness H. 
From the angle of 45 degrees, 5 nodes in Fig. 6 are equally spaced by taking the center of the 

specimen as the origin and the Mises stress-time curve diagram is drawn to compare among three 
designs. Firstly, we can see the stress value is higher in the location farther away from the center 
point. When the geometry has an increase thickness in the central region of the specimen, stress 
gradually goes into a more stable state. Sencondly, Mises stress values of A area, which is at the 
center point, are close to these of B area; the stress gap become lager in C, D, E area, but the gap is 
getting smaller with the increase of thickness, which means stress distribution uniformity is better. 
Especially, when the thickness reaches 1.1 mm, stress values in every area are very close. 

 
Fig. 6. Position of sample nodes. 
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B H= 0.9 mm RB= 3 mm 

 
C H= 0.9 mm RB= 5.5 mm 

Fig. 8. Mechanical strain and shear stress distributions for different RB. 
According to concave fillet design, in this paper shear stress and strain distribution is verified 

when fillet RA (H=0.9 mm) increases outwards. Strain distribution uniformity is much better with 
RA of 1mm up to 3mm as it is shown in Fig. 9, which meets the requirements of the experiment. In 
this paper the maximum shear stress of each specimen is plotted in Fig. 11 which emphasis that the 
maximum shear stress value has been reduced although it is still being in the region of slot. And 
then, Mises stress declines and the maximum shear stress value changes little with RA up to 4mm, 
which illustrates that shear stress in the middle the slot will increase by expanding RA, and the 
optimization effect is limited beyond this range. In comparison with stress-time curves of the graph 
7B and10A, stress value is so close that there is little change in strain in central area with the fillet 
enlarged so that we can conclude the reduction of shear stress leads strain distribution to being 
even. 

Mechanical strain                      Shear stress 

 
A H= 0.9 mm RA= 3 mm 
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