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Abstract.A ZJ-type high pressure lubrication pump is analyzed by multidisciplinary design 
optimization (MDO) method, where data are sampled via optimal Latin hypercube experiments, and 
the response surface models (RSMs) for the plunger piston and cylinder body of the pump are 
built.Lightweight design of the piston mechanism is conducted by using the improved collaborative 
optimization with a relaxation factor combined with sequential quadratic programming (SQP) 
algorithm.The results show that the approximate model accelerates the opimization speed greatly, the 
mass of optimized plunger mechanism is reduced by 8.03%, and MDO can effectivelly deal with the 
coupling factors between the different components to reduce mass while the stress constraints and 
fatigue life are met. 

1. Introduction 

Traditional design methods tend to achieve a local optimum in a single discipline. With the 
increasing complexity of engineering problems, local optima can not meet the requirements to 
achieve global optima. Multidisciplinary design optimization(MDO) is such a global optimal method 
where a complex system is decomposed into different subsystems by using suitable decomposition 
optimization strategy, each subsystem using existing experience and knowledge for analysis and 
optimization, and considering the mutual restrictions and influence relations between various 
disciplines at the same time. MDO is a methodology essentially[1-3], based on concurrent engineering 
theory, by fully exploring and using the coordination mechanism of interaction between the various 
disciplines to balance the conflicts in the system, andusing multi-disciplinary optimization method 
and optimization algorithms to seek optima of the system. MDO was first used in the field of 
aerospace[4], and has undertaken a wide range of applications in aircraft, automobiles, machine tools, 
robots, etc[5-6]. This paper takes a ZJ-type high pressure lubrication pump as an example, uses the 
approximate technology for the high computational cost target, and obtains approximate model with 
response surface method to replace the original design. Based on the integration of Solidworks and 
Ansys by Isight, the lightweight design of the piston mechanism is conducted by using improved 
collaborative optimization. 

2. The Construction of Approximate Model 

This study use Isight software to integrate and drive various sub-disciplines software to achieve 
optimization of the pump. Asanalysis software calculates costly, many iterationsare 
time-consuming.In order to improve the efficiency of optimization analysis,the response surface 
methodology (RSM)is used to obtain the approximate model. The RSM was first proposed by Box 
and Draper[7], which combinesexperimental design with mathematical statistics.The RSM gets 
relatively precise approximate functional relationship in the local area through trials, and shows up 
through algebraic expression.The mathematical foundation of RSM is fully solid with good 
continuity and derivability, as it can remove value noise well and make the target response 
smoother.This approximate method compromises the fitting accuracy and efficiency well and is 
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5. Conclusion 

The plunger mechanism of lubrication pump is used as a case of study, and response surface 
approximation model is adopted to improve the efficiency of optimization. After the optimization of 
the plunger mechanism, the overall mass is reduced by 8.03%. The purpose of optimization is 
achieved. In this study, the MDO method is first used in the plunger mechanism of lubrication pump, 
which can provide a new approach for the design of other plunger mechanisms. 
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