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Abstract. For the application situation of traditional vibratory stress relief (VSR) method, 
technology of orientational VSR was proposed, that is the residual stress distributions of workpiece 
is simulated by use of finite element method, and then determine the part of workpiece need to 
reduce residual stress, select the appropriate modal according to the geometry of workpiece and 
vibrated for residual stress relief. Firstly, the modal analysis was carried out on aluminum alloy 
7075-T651 specimen by using finite element method, determine middle section of specimen for 
VSR, and choose the first order bending vibration mode for vibration mode. The simulation of 
dynamic stress for specimen was carried out by using transient dynamic analysis method. It is 
concluded that a linear relationship between the dynamic stress in the direction of Z axis (axial 
direction of specimen) and amplitude. Secondly, we assigned initial stress in the middle section 
along the Z axis (axial direction of specimen) of the specimen, the finite element model that 
contained initial stress for VSR simulation was established, VSR simulated by using transient 
dynamic analysis method. It is concluded that a quadratic relationship between surface residual 
stress of the specimen and amplitude. Finally, the fatigue simulation was carried out by using 
FE-safe software. It is concluded that fatigue strength increased with amplitude, but the 
phenomenon “much vibration” appeared when amplitude continues to increase that led to decrease 
of fatigue strength and a quadratic relationship between fatigue limits and amplitude. 

1. Introduction 

With the rapid development of modern industry, demands of fatigue life for aluminum alloy are 
increasing higher and higher.Duringtheproduction and processing of aluminum alloy, the residual 
stress iscreated inside the material due to various processing variables such as external force and 
heat.The imbalanced distribution of residual stress is a major cause for the deformation and 
cracking of aluminum components,greatly affecting the stability of their dimensional accuracy. 
Besides, the distribution of residual stress also plays a significant role on the fatigue life of 
aluminum components.Therefore, the homogenized residual stress measures must be taken in the 
production of aluminum alloy components. 

Vibratory Stress Relief (VSR) is a green and efficient aging technology. It prompted the 
workpiece vibrated under periodic external force, produces micro plastic deformation on 
componentand makes residual stress relief that led to stable component size. Compared with the 
traditional natural stressrelief (NSR) and thermal stress relief(TSR), VSR technology hasadvantages 
of short production cycle, ease of implementation in manufacturing process, low investment cost 
and so on[1], besides, VSR have high social and economic benefits, also. VSR as an important 
supplement for NSR and TSR has been widely used in the world [2, 3].  

However, researchers have been perplexed by the relationship between VSR load bearing and 
fatigueprocesses of component.Many researchers have studied the relationship between VSR and 
fatigue life of components. Song Tian Min [4] studied the influence of VSR on fatigue life of 
welded components, concluded that VSR can improve its fatigue life.Balasingh [5], Wozney and 
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Crawmer [6] believed that fatigue damage due to the VSR treatment could not be neglected but no 
detailed experimental data were presented to support their view. Sonsino [7] reported that VSR 
decreases fatigue life of components significantly. Jesensky [8] found no damage in fatigue life 
ofcomponents due to VSR. Munsi [9], Sun Fenghua and Fang Dexin [10]found higher fatigue life in 
vibrated specimens. Lu Yaping and He Wen [11]analyzed dislocation and dislocation pileup group 
stress field using the method of micromechanics, reaching the conclusion that VSR can increase the 
fatigue life of the specimen.Most of the above investigations were conducted mainly targeting steel, 
cast iron and welded component, but the researches on aluminum alloy are much less. In view of 
the traditional VSR application, technology of orientational VSR was proposed, that is the residual 
stress distributions of workpiece is simulated by use of finite element method, and then determine 
the part of workpiece need to reduce residual stress, select the appropriate modal according to the 
geometry of workpiece and vibrated for residual stress relief.The material for the research is 
aluminum alloy 7075-T651, use ANSYS software to finite element simulation.Determine the 
position that orientational vibratory stress relief is middle section of specimen by modal analysis. 
The specimen was assigned initial stress in the middle section of specimen and conducted VSR 
simulation, the residual stress changed before and after VSR under the condition of first order 
frequency and various amplitude were studied. On the basis of above, fatigue lives of specimens 
were studied by fatigue simulation. 

2. 7075-T651 aluminum alloy specimen 

7075-T651 is Al-Zn-Mg-Cu series aluminum alloy, it has some excellent performances such us 
high specific strength and stiffness, great corrosion resistance, high toughness, it can be used in 
aircraft structures and other high strength structures [12,13,14]. Its composition and mechanical 
properties are shown in Table 1 and Table 2.Fig. 1 is a schematic illustration of the fatigue specimen, 
which is designed according to China national standard GB/T 3075-2008 [15], its length is 190mm, 
and the middle section of specimen is 10mm×10mm × 5 mm. 

Table 1 Alloying elements and their concentrations of aluminum alloy 7075-T651 (%) 

Elements Si Fe Cu Mn Mg Cr Ni Zn Ti 
Weight 

Percentage 
0.40 0.50 1.2～

2.0 
0.30 2.1～

2.9 
 0.18～

0.28 
0.05 5.1～

6.1 
0.20 

Table 2The mechanical properties of aluminum alloy 7075-T651 

Elastic modulus 
E/GPa 

Yield strength 
σs/MPa 

Tensile strength 
σb/MPa 

Density 
ρ(g/mm-3) 

Elongation 
δ/% 

71.7 513 578 2.81 9 

 

 
Fig.1 The fatigue specimen of aluminum alloy 7075-T651 
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value.Because of Z direction (axial direction of specimen) dynamic stress was biggest and X、Y 
direction smaller when vibrated, so studied Z direction dynamic stress only. One end of specimen 
was constrained all DOF except X axis and free to the other end, dynamic stress were simulated at 
first order frequency 109.32Hz of specimen and various amplitudes in X direction according to 
results of modal analysis. The result of whole and middle section of specimen dynamic stress in Z 
direction has been shown in Fig. 4 (The red part was the position of biggest dynamic stress). The 
results of various amplitudes corresponding to dynamic stress values have been shown in Table 3. 
Table 3Various amplitudes corresponding to dynamic stress values 

Amplitude/mm 0 0.2 0.4 0.6 0.8 1.0 1.2 
Dynamic stress/MPa 0 26.2 52.5 78.7 105 131 168 
According to Table 3, fitting out the curve in Fig. 5 by using least square method, it is can be 

concluded that a linear relationship between amplitude and dynamic stress in Z direction, as shown 
in equation (1): 

σd=136.8A-1.9                                                          (1) 
Whereσdis dynamic stress in Z direction, unit: MPa. A is amplitude value, unit: mm. 

0 0.2 0.4 0.6 0.8 1 1.2
0

50

100

150

200

 
Fig. 5 The amplitude-dynamic curve 

3.3VSR simulation of specimen 
The position that orientational vibratory stress relief was the middle section of specimen, it was 

divided to 10 layers.The element shape was hexahedron, its length was 0.5mm. We assigned 
residual stress for each layer according to the principle of force and torque balance. Because of 
residual stress in Z direction changed largest for the first order bending vibration type, in X、Y 
direction changed smaller, so assigned residual stress in Z direction for each layer, and assigned 
residual stress changed along with thickness direction, the residual stress value was assigned as 0 on 
rest of specimen.It is assumed that initial residual stress distribution along with thickness direction 
shown in Fig. 6 according to the literature [16], then build up the finite element model that contains 
initial residual stress has been shown in Fig. 7. On the basis of above, VSR simulated by using 
transient dynamic analysis method, the residual stress dropped after VSR, residual stress 
distribution in Z direction after VSR shown in Fig. 8. The surface residual stress in middle section 
of specimen corresponding to various amplitudes has been shown in Table 4. 

1 2 3 4 5 6 7 8 9 10
200

100

0

100

200

300

 
Fig. 6 The initial residual stress distribution along with thickness direction 
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Table 5The fatigue limits in the state of various amplitudes 

Amplitude/mm 0 0.2 0.4 0.6 0.8 1.0 1.2 
Fatigue limit/MPa 115 125 130 140 150 145 130 

Fig. 11 has been shown S-N curves that the results of fatigue simulation in initial and various 
amplitudes state. The fatigue limits have been shown in Table 5. 

According to Table 5, fitting out the curve in Fig. 12 by using least square method, it can be 
concluded that a quadratic relationship between amplitude and fatigue limit, as shown in equation 
(3): 

S-1=-52A2+81.3A+111.9(3) 
WhereS-1 is fatigue limit, unit: MPa. A is amplitude value, unit: mm. 

0 0.2 0.4 0.6 0.8 1 1.2
100

110

120

130

140

150

 
Fig. 12 The curve of amplitude and fatigue limit 

With the increase of amplitude, the fatigue strength of 7075-T651 specimen also increased 
according to fatigue simulation. Fatigue strength reached maximum when amplitude was 0.8mm, 
and fatigue limit increased from 115MPa to 150MPa. The fatigue strength and fatigue limit can be 
decreased when continue to increase the amplitude.  

4. Conclusion 

1. A linear relationship between amplitude and dynamic stress in Z direction (axial direction of 
specimen) for 7075-T651 aluminum alloy, with the increase of amplitude, dynamic stress in Z 
direction (axial direction of specimen) also increased. 

2. A quadratic relationship between amplitude and surface residual stress in Z direction (axial 
direction of specimen) of specimen. The surface residual stress in Z direction (axial direction of 
specimen) was minimum 114MPa when amplitude was 0.8mm. The residual stress can be rose 
again when amplitude continued to increase. 

3. On the basis of VSR, fatigue simulation was conducted. A quadratic relationship between 
amplitude and fatigue limit. VSR can improve fatigue life of aluminum alloy 7075-T651 in a certain 
range, and fatigue limit increased from 115MPa to 150MPa. The phenomenon of “much vibrated” 
can be occurred when continue to increase amplitude, which led to fatigue strength and limit 
dropped.  
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