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Abstract. As the hidden Markov model (HMM) has a strong ability of time sequence modeling, the 
continuous Gaussian mixture HMM is used to establish a model base of the rolling bearing fault. An 
adaptive particle swarm optimization (APSO) with extremum disturbed operator and dynamic change 
of inertia weights is introduced to the traditional training algorithm for solving the local extremum 
problem. The vibration signal is collected for extracting 12 order LPC coefficients as a feature vector 
through the dispose of adding window. In the given feature vector, the HMM is built for bearing fault 
condition monitoring and fault diagnosis. Then, different fault conditions experiment are carried out 
on the motor bearing test-bed. The experiment result shows that the method can use a small amount of 
samples for training HMM, and it is more effective and has higher classification accuracy in fault 
diagnosis compared with the traditional training algorithm. 

1. Introduction 

The rolling bearing is widely used in all kinds of rotating machinery; it is also one of the most 
vulnerable parts. As is known, the bearing failure will causes abnormal vibration and noise on 
running mechanical equipment, even leading to the equipment damage. Thus, an effective method of 
bearing fault diagnosis, identifying the degraded conditions of bearing correctly, plays a positive role 
in avoiding mechanical accident. Hidden Markov model (HMM) has a strong sequential model 
building ability of signal processing, which is very suitable for analyzing the nonstationary signal 
with poor reproducibility. HMM has successfully solved the problem of speech recognition and 
become one of main methods in the field of speech recognition. HMM is a dual stochastic process 
that its transfer between different states is a Markov process and the relationship between the state 
and its corresponding observed values is another stochastic process. The state of model cannot be 
observed directly, which is a kind of hidden state. It should be estimated through the observation 
symbols. Fault diagnosis of mechanical equipment is extremely similar to HMM. The status of 
equipment is not a direct observation which is judged by the runtime parameters of mechanical 
equipment. Considering the similarity of the mechanical vibration signal and the speech signal, 
scholars at home and abroad have applied HMM to the field of fault diagnosis. Bunks [1] pointed out 
that the method based on HMM is available for mechanical equipment state prediction. Hasan, etc. [2] 
trained the HMM via the historical data of bearing failure, and researched the fault diagnosis and 
prediction technology of bearing. Singular spectrum analysis and continuous hidden Markov model 
are used for bearing fault diagnosis and performance assessment in [3]. 

Traditional training algorithm of HMM has the disadvantage of slow convergence and falling into 
local minimum, that has significantly affected its performance in bearing fault diagnosis. This paper 
introduces an adaptive swarm optimization (APSO) algorithm, and applies it to the training of HMM. 
A new method of HMM training based on APSO algorithm is proposed, which effectively improves 
the capability of HMM in fault identification.  
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2. Proposed Method 

2.1. Hidden Markov Model 
In general, a HMM is usually defined by the following parameters: 
 The number of states in HMM, N. 
 The number of observation corresponding to each state, M. 
 The initial probability distribution vector, { }i  , where  1( ),1i iP q i N     . 

 The state transferring probability matrix, ( )ij N NA a   where 1( | ),1 ,ij t j t ia P q q i j N       

which means the probability of being in state j  at time 1t   when the state at time t  is i . 

  The observation probability matrix, ( )jk N MB b   where ( | ),1 ,1jk t k t jb P o v q j N k M        

which means the probability of the k th  observation being observed when the state at time t  is j . 
If the observation  is modeled as continuous, each state has a different set of probability density 
function. 

The shorthand notation ( , , )A B   can be used to express a HMM. 
In the rolling bearing fault diagnosis, most of scholars’ research use the discrete HMM for 

classifying faults of the rolling bearing [4][5] . However, the continuous HMM directly regards the 
observed values as observation sequence, and a discrete HMM need to firstly quantify the observed 
values. Therefore, the use of continuous HMM has the advantages of distortion and classification. This 
paper uses the continuous Gaussian   mixture HMM for studying the fault diagnosis. The degradation 
of bearing is an irreversible process, a state can’t return to the previous state. So the left-to-right  
Markov chain with five states  (normal running and 4 different fault conditions) is chosen. A five-state 
HMM is shown in Fig.1. The initial probability distribution vector is set to [1,0,0,0,0] . The observation 
probability of each state can be represented by mixture Gauss density functions [6]. Observed values 
probability density function can be expressed as 

1

( ) ( , , ),1
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j jk jk jk
k

b X c N X j N
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where ( , , )jk jkN X    is a multidimensional Gaussian probability density function, X  is the observation 

sequence, jk  is the average vector, jk  is the covariance matrix, K  is the number of composition in 

mixture Gauss density functions, jkc  is the combination coefficient and 
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Fig. 1. Five-state left -to-right HMM 

For purpose of strengthening the stability of HMM in fault diagnosis, multiple observation 
sequences are used for modeling and training the HMM [7]. A set of L  observation 
is ( ) ( ) ( ) ( ) ( )

1 2( 1, 2, , ), { , , , }l l l l l
TO l L O o o o   . Assuming each observation sequence is independent, the 

probability of observation sequences set can be expressed as 
( )

1

( | ) ( | )
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l

l

P O P O 


               (2) 

 Revaluation equations for training HMM based on  Baum-Welch algorithm are amended as 
( ) ( )

1 1
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In order to detect the presence of bearing failure, it is sufficient to train a single HMM 
corresponding to bearing in normal operating condition. The HMM is trained with observation 
sequence extracted from the collected vibration signal. Then, the probability of observation sequence 
for the normal condition can be calculated. Comparing with the predetermined threshold, if the 
probability is greater than the threshold means that there is no fault present in the bearing. Otherwise, 
the bearing is operating in fault condition. After detection of the bearing fault, fault diagnosis 
program is started. To achieve the goal of identifying correctly in which degradation state the bearing 
is. It is necessary to train HMMs to present its corresponding bearing faults. Similarly, the collected 
vibration signals are extracted to obtain observation sequence. The probability of observation 
sequence is calculated given all the HMMs in the previously established model base. The HMM, for 
which the probability is the largest, determines the operating condition of the bearing. The process of 
bearing fault diagnosis is shown in Fig.2. 

0 0( | )P P O  1 1( | )P P O 
4 4( | )P P O 

0 1 4P P P， ， ，

 
Fig. 2. Bearing fault diagnosis process diagram based on the HMM 

2.2. Adaptive particle swarm optimization  algorithm with extremal disturbance 
Baum-Welch algorithm is relatively successfully solved the problem of training HMM parameters. 

But the algorithm belongs to the hill-climbing algorithm of local optimal, which depends on the 
initial value of parameters strongly. Therefore, the inaccurate estimation of initial value often leads to 
premature convergence and achieve local optimal solution. Particle swarm optimization (PSO) is a 
swarm intelligence technique based on group collaboration, which searches through the total solution 
space by the evolution of the particles. And it is more advantageous than the hill-climbing algorithm 
to find global optimal solution. 

The basic PSO algorithm is proposed by Kennedy et al. [8] through the study of birds prey 
activities. Suppose that a particle population have N particles, including that the position of the i th  
( 1,2, , )i N   particle is expressed as 1 2( , , , )D

i i i iX x x x  and the speed of the i th  ( 1,2, , )i N   particle 
is expressed as 1 2( , , , )D

i i i iV v v v  . Then the fitness ( )f x  should be introduced into the optimization 
function. The position and speed of the particle are updated according to the following evolution 
equation as 

( 1) ( ) ( 1)i i ix t x t v t                        (6) 

1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ) ( ))t t i i g iv t wv t c r p t x t c r p t x t                      (7) 
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where 1c  and 2c  are  acceleration coefficients, w  is inertia weight, 1r  and 2r  are random numbers 
between [0, 1]. ( )( 1, 2, , )ip t i N   denotes  the optimal position of the i th  particle in current search, 

( )( 1, 2, , )gp t i N   denotes the optimal position of the particle population. 

According to the research questions, iterative algorithm termination conditions may be selected to 
be greater than the maximum number of iterations or the optimal position of particle population in the 
current search can satisfy the demands of setting fitness. 
1) Extremum disturbed operator 
 To solve the premature convergence problem of the PSO, disturbance operator is used to adjust the 
optimal positions of the particle and the particle population in this paper. With the adjustment, the new 
algorithm can escape from the local minimum of early convergence. Meanwhile, the accuracy of the 
solution is constantly improved  and the disturbance operator becomes smaller along with the iteration. 
Disturbance operator are defined as follows: 

 3 max

4 max

(1 / )(1 ( 2) ) 1
(1 / )(1 ( 2) ) 1

r t t rand
r t t rand
     
                        (8) 

3 4,i i g gp r p p r p                      (9) 
where t  is the current number of iterations, maxt is the largest number of iterations, then max(1 / )t t  will 
gradually decreases to zero with the increasing the number of iteration. rand  is a random number 
between the [0, 1], then (1 ( 2) )rand    generates the random number between [-1, 1], which 
implements the disturbance on both sides of the extreme value point. So 3 40 , 2r r  , and finally tend to 
1.Disturbance operator is introduced into the equation (7) to generate a new update equation: 

1 1 3 2 2 4( 1) ( ) ( ( ) ( )) ( ( ) ( ))t t i i g iv t wv t c r r p t x t c r r p t x t                    (10) 

2) Adaptive adjustment of inertia weight 
Shi and Eberhard's research [9] shows that the different inertia weight value w  has an obvious 

influence on the performance of the algorithm. On the one hand, the larger w  can effectively avoid 
falling into local extremum and strengthen the global search ability of the algorithm; on the other hand, 
the smaller w  is able to accelerate the convergence rate and is conducive to local search. This paper 
adopts an adaptive parameter setting method, w  is defined as a linear function decreases along with 
the increase of the number of iterations. The linear function can be expressed as  

max min
max

max

( )t w w
w w

t

 
                  (11) 

where max =0.9w  is a maximum of inertia weight, min =0.4w  is a minimum of inertia weight. 
When equation (10) and (11) are introduced into the PSO algorithm,  an new adaptive particle 

swarm optimization (APSO) algorithm is proposed in this paper. 

3. The HMM Training Method Based on APSO Algorithm 

To absorb the advantages of APSO algorithm in global optimization, the HMM training method 
based on APSO algorithm (APSO-HMM) incorporate APSO into Baum Welch algorithm in the 
process of  the HMM training. A particle of the particle population represents a HMM in the  new 
method for parameter optimization of HMM. First of all, APSO algorithm is used for global 
optimization under the solution space. Then, the Baum-Welch algorithm is used to do k   times local 
search for the best HMM in every generation of the evolution by APSO algorithm. This method makes 
the traditional training methods to reduce the dependence on the initial value of parameters, and is 
conducive to jump out of local extremum. For continuous Gaussian mixture density HMM, this paper 
uses the new algorithm to optimize the parameters of HMM including the state transition probability 
matrix A and the observation probability matrix B. Among them, the observation probability matrix B 
consists of the combination coefficient jkc , the average vector jk  and the covariance matrix jk . Each 

of these three elements above needs to be optimized so as to complete the parameter optimization of 
the observation probability matrix B. The detailed process of the training algorithm is shown in Fig.3. 
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end
end

while  
Fig. 3. The process of APSO-HMM training algorithm 

4. The Experiment and Result Analysis 

To verify the validity of the APSO-HMM algorithm, vibration data collected in the motor bearing 
experiment of Case Western Reserve University Bearing Data Center was used for experimental 
analysis [10]. The test platform consisted of a 2 horsepower electric motor, a torque sensor and a 
dynamometer. Vibration signal was collected using acceleration sensors, which were attached to the 
drive end of the motor housing at the 12 o’clock position. Vibration signals were recorded by a 16 
channel DAT recorder, and post processed in MATLAB software. 

In the experiment, the sampling frequency of the signal was 12 kHz. Vibration data was collected 
for normal running state and 4 different fault conditions.  Faults were introduced into drive-end 
bearings using electro-discharge machining with fault diameters of  7 mils, 14 mils, 21 mils, and 28 
mils(4 different fault conditions: degradation state 1, degradation state 2, …, degradation state 4 ). The 
length of time for each vibration signal is 10 seconds. Before feature extraction the vibration signal 
was divided into T windows of equal length. By using the autocorrelation method, each window was 
encoded as a feature vector, which consisted of a set of 12 order LPC coefficients for that window. All 
the feature vectors for T windows were joined together to form an observation sequence, which will be 
used for training HMMs. The Feature process extraction is shown in Fig.4. 

 
Fig. 4. Feature extraction of vibration signal 

In the process of model training, the vibration signals for normal condition and 4 different fault 
conditions are divided into 20 equal segments, respectively. Each section is 0.5s long. Among them, 
the former 2 sections is used for training the HMMs, namely it takes L=2 observation sequences for 
modeling according to the equation (2). And the remaining 18 sections are used to verify the 
performance of the model. For feature extraction, the window size is set to 0.05s to extract the LPC 
coefficients as a feature vector. The initial state of transition probability matrix and continuous mixed 
Gaussian probability density function is random initialization. The parameters of APSO-HMM 
method for training HMM is set as follow: maximum number of iterations of the algorithm is 10, the 
particle number of the population is10, the state number of  HMM is 5, and Baum-Welch algorithm 
implements 4 times local optimization after each update of particle iteration. The parameters of 
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traditional Baum-Welch method for training HMM is set as follow: the termination condition is that 
the convergence error of the likelihood probability between two iterations is less than 410e  , and the 
state number of  HMM is 5. Each method test 5 times in the HMM training. 

The average likelihood probability of the HMM training for APSO-HMM method and traditional 
Baum-Welch method  in the tests is shown in Table 1. The greater the likelihood probability value of 
the HMM training indicates that the training of HMM is better. And its recognition ability is more 
prominent. The table shows that APSO-HMM algorithm is more excellent than traditional 
Baum-Welch algorithm in the model training. 

Table 1 The average likelihood probability of HMM training 

Training data  
Average likelihood probability 

APSO-HMM algorithm Baum-Welch algorithm  
normal  529.4603 521.2667 

degradation 1 550.9924 540.1592 

degradation 2 534.2993 505.0045 

degradation 3 626.6712 572.0256 

degradation 4 565.0951 509.8068 

In the fault diagnosis process, a HMM model base, including the HMMs of five different operation 
state, is established through the use of APSO-HMM algorithm. Then, test sample data is input to the 
model base for fault diagnosis test. Table 2 shows the part of the logarithmic likelihood probability of 
test samples, which are calculated by the trained models. And diagnosis result shows that the 10 
samples of test data get the correct classification. 

Table 2 The logarithmic likelihood probability and diagnosis results 

Test data 
Logarithmic likelihood probability Diagnosis 

result normal degradation 1 degradation 2 degradation 3 degradation 4 
normal 207.9 -2544.6 -1883.6 -Inf -3155.8 normal 

normal 207.2 -2387.9 -1927.5 -7595.6 -2805.9 normal 

degradation 1 -1840.9 243.9 164.0 -4005.8 -397.2 degradation 1 

degradation 1 -1960.8 239.5 152.8 -Inf -546.6 degradation 1 

degradation 2 -1854.0 -72.4 182.4 -3784.2 -611.8 degradation 2 

degradation 2 -1709.7 73.3 208.7 -4438.1 -518.8 degradation 2 

degradation 3 -1943.2 -361.5 84.4 336.2 -635.9 degradation 3 

degradation 3 -2067.0 -448.9 -5.8 224.4 -563.3 degradation 3 

degradation 4 -3136.0 -1187.7 -1456.2 -5352.2 118.5 degradation 4 

degradation 4 -2969.7 -1032.0 -1347.2 -5775.2 141.2 degradation 4 

The remaining 18 sections of data is input to the HMM model base trained with APSO-HMM 
algorithm and the HMM model base trained with Baum-Welch algorithm for fault diagnosis test, 
respectively. The diagnosis result of the two model bases is shown in Table 3 and Table 4 below. The 
correct diagnosis for APSO-HMM algorithm is 72 times, and the accuracy of the classification is 
100%. By contrast, the correct diagnosis for Baum-Welch algorithm is 70 times, the wrong diagnosis 
is 2 times, and the accuracy of the classification is 97.2%. Thus, it is confirmed that the HMM training 
method based on APSO algorithm has higher ability of fault identification. 

Table 3 Bearing fault diagnosis of APSO-HMM 
Test data Test times Normal Degradation 1 Degradation 2 Degradation 3 Degradation 4 
normal 18 18 0 0 0 0 

degradation 1 18 0 18 0 0 0 

degradation 2 18 0 0 18 0 0 

degradation 3 18 0 0 0 18 0 

degradation 4 18 0 0 0 0 18 
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Table 4 Bearing fault diagnosis of Baum-Welch 
Test data Test times Normal  Degradation 1 Degradation 2 Degradation 3 Degradation 4 
normal 18 18 0 0 0 0 

degradation 1 18 0 16 2 0 0 

degradation 2 18 0 0 18 0 0 

degradation 3 18 0 0 0 18 0 

degradation 4 18 0 0 0 0 18 

5. Conclusion 

In order to overcome the shortcomings of traditional algorithm in training HMM, this paper 
proposes a training method of HMM based on APSO algorithm (APSO-HMM). The experiment 
comparison of two training algorithms shows that the new training method has more excellent model 
training effect, and is better to complete the establishment of the HMM model base. Result Analysis 
shows that the HMM trained with APSO-HMM method has a higher recognition rate than the HMM 
trained with Baum-Welch algorithm. The new training algorithm can not only avoids falling into 
local minima, but also improves the ability of fault diagnosis. 
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