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Abstract—Spatial Modulation is a newly developed concept 
for multi-antenna systems, which could greatly reduce the signal 
processing complexity and hardware implementation burden 
faced by these systems today. However, there are few works on 
the analysis of grouped Spatial Modulation, which has relatively 
large bit error rate(BER). In this paper, we propose a novel 
approach that the BER is approximatively calculated by the Chi 
square distribution and study the influence of the number of 
groups(K) at the sending end and the number of users(M) at the 
receiving end on the BER in the downlink of Rayleigh channels. 
When the number of groups(K) is increases while the number of 
users(M) is constant, the error performance is improved 
obviously. Finally,  Monte Carlo Simulations is provided to verify 
the analytical results. 

Keywords—Spatial Modulation; precoders; error performance; 
MIMO 

I.  INTRODUCTION  
Theoretical and practical results obtained during the past 

years have shown that Multiple–Input–Multiple–Output 
(MIMO) wireless systems can significantly increase the 
capacity of wireless networks[1-3].In particular, compared with 
the traditional modulation and coding schemes, Spatial 
Modulation(SM) achieves a higher data rate, with a lower 
complexity receiver[4-7]. However, existing studies on SM 
have mainly focused on the analysis of capacity, and there is 
little work on the analysis of  the bit error rate(BER). 

In this paper, at first, the transmit antennas of base station 
are grouped to improve the transmission rate and the SM 
concept is applied to each antenna group. Let us take the 
following case as an example. With 16 base station antennas 
and BPSK modulation in the downlink of SM broadcast 
channels, the system can only achieve a transmission rate of 
(log216 + 1) = 5 bit; while the system can transmit 4×(log216/4 
+ 1) = 12 bits by evenly dividing all the antennas into 4 groups. 
Hence, grouped the transmit antennas can increase the 
transmission rate of SM. Second, we use zero forcing for the 
downlink of SM broadcast systems and calculate the BER by 
the Chi square distribution. Finally, we analyze the influence of 
the number of groups and the number of receiving antennas on 
the BER and that how to effectively reduce the BER by 
changing the number of groups. 

This paper is organized as follows. Section II describes the 
system and the model used. Section III presents the proposed 
the zero forcing precoders scheme. Section IV provides 
performance analysis and conclusion is given in Section V. 

II. SYSTEM MODEL  
The following notations are used throughout the paper: the 

superscripts T denote the transpose operations, and superscript 
H denotes the transpose conjugate; A denotes the Frobenius-

norm of A; (0, )cn b stands for complex Gaussian distribution 
with mean 0 and variance b. 
      We consider a broadcast (downlink) channel with a single 
base station  equipped with Nt antennas, and M users each with 
one antenna. We evenly divided the Nt antennas into K groups 
and used SM in the transmit antennas of the same group. 
There are  Nt /K antennas in each group. The communication 
channel between each pair of transmit and receiving antennas 
is modelled by slowly time varying flat Rayleigh fading. In the 
analysis, we assume that channel state information is available 
at the base station . 

In the downlink, the base station transmits independent 
information to each user. Let y  be the received signal at user 
m . The received signal can be expressed as 

[ ] [ ]1 m 1 my ....y n ....nΤ Τ= = +HY x                         (1) 

where [ ]1 Kx ,...,x=x is the transmitted signal vector with 

, 1,...,kx k K= , being the transmitted signal from the kth 

antenna at the base station, [ ]1 Mn ,...,n Τ=n is the noise 

vector with , 1,...,mn m M=  ,being the complex noise at the 
m-th user, In the SM system, at each time instant, one antenna 
is activated, other antennas in the same group stay idle and 
assumed that it has no influence on channel. Hence, H  can be 
expressed as a M K× MIMO channel matrix with its 
element , (0,1),m kh cn  denoting the complex fading channel 
gain from the k-th transmitter antenna at the base station to the 
m-th user. We assume that the channel fading coefficients of 
the channel matrix H are independent from each other. For 
high data rate transmission, the channel matrix follows a block 
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fading model, which means the fading coefficients remain 
constant within a frame and change independently from frame 

to frame. The power constraint 
2 1=x is imposed on the 

signals. In addition, we assume that all the users have the same 
noise level, that is 2(0, )mn cn σ  .Therefore the signal-to-

noise ratio is 21/γ σ= . 

III. ZERO FORCING SCHEME  
In the downlink MIMO broadcast channel, let us define the 

information symbol vector as [ ] ,1 mu ,...,u Τ=u  which 
contains the independent information symbols of the M users. 
Assume that , 1,..., ,mu m M= are drawn from the same 

symbol constellation with 
2( ) 1mE u = . The symbol vector is 

linearly processed by a matrix A  with size K M×  

Considering the power constraint
2 1=x , the transmitted 

signal vector x  can be expressed as 

β
=

Aux                                                       (2) 

whereβ is a power normalisation factor given by
2β = Au . 

The number of users that can be simultaneously supported 
by the base station is less than the number of base station 
antennas, that is M K≤ . The received signal y can be 
expressed as 

1
β

= +y HAu n                                         (3) 

It is obvious from (3) that y  can be used directly as the 
estimated information symbol vector û  ,that is û y= . 

The precoder can be designed based on the ZF criterion[8]. 
The precoding matrix is given by 

H H 1( )−=A H HH                                   (4) 
Substituting (3) into (2), we get the estimate of the 

information symbols at the users side as 

ˆ
β

= +
uu = y n                                        (5) 

Considering
2 H H 1( )β −= =Au u HH u  

We have the detection γ  of the mth user as 

2 2 H H 1

1 1
( )

γ
σ β σ −= =

u HH u
                     (6) 

If we assume the entries of u are standard Gaussian 
variables, that is ,  (0,1)mu cn ,     then the power 

normalisation  factor 
2 H H 1( )β −= =Au u HH u in the 

downlink has a scaled F-distribution with the parameters 

1 2n M= and 2 2( 1)n K M= − + , which can be represented 
by 

1 2,1 n n
M F

K M
β

− +
                               (7) 

The probability density function (pdf ) of b can be 
expressed as 

( )
1

1

!( )
( 1)! ! (1 )

M

K
Kf

M K M
ββ
β

−

+=
− − +

           (8) 

As we can see from (6), the detection γ  is an scaled 
inverse of the normalisation factor β that has a scaled F-
distribution. It is shown in [9] that the inverse of an F variable 
with parameters 1n and 2n , denoted by 

1 2,n nF , is also an F 

variable but with parameters 2n and 1n .Therefore γ also has a 
scaled F-distribution represented by 

2( 1),22

1
K M M

K M F
M

γ
σ − +
− +

                       (9) 

Its probability density function is given by 

( )
2 2

2 1

( ) !( )
(1 ) ( 1)! !

K M

K
Kf

M K M
σ γ σγ
σ γ

−

+=
+ − −

        (10) 

IV. PERFORMANCE ANSLYSIS 

A. Theoretical calculation of BER 

let us consider that the F-distribution with parameter 1n and 

2n can be accurately approximated by a Chi square 

distribution with degree of freedom 1n , denoted by 1( )G n xλ ,  

whereλ is a shrinking factor[10]  and 2 1/ 3n n ≥ . That is 

1 2, 1( ) ( )n nF x G n xλ                                 (11) 

1 2 1

2 1

2 2 / 3
2 4 / 3

n n n x
n n x

λ + − +
=

+
                        (12) 

We can get an approximation of the density of λ as 

1
1 1

( / )( ) ( / , ) d n af g n a n
d

λ γγ λ γ
γ

≅              (13) 

where 2( 1) /a K M Mσ= − + equals the scale factor 

in the scaled F-distribution, 1 1( / , )g n a nλ γ  is the density of 

the Chi square distribution with degree of freedom 1n , given 
by 

1

1

/2 1
1 1

1 1 /2
1

( / ) exp( ( / ) / 2)( / , )
2 ( / 2)

n

n
n a n ag n a n

n
λ γ λ γλ γ

− −
=

Γ
  (14) 

With ( )nΓ denoting the Gamma function, ( ) ( 1)!n nΓ = − . 
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Fig.1 Comparison between the F-distribution and the 

approximation using shrinking Chi-square 
distribution(n1=2,n2=6) 

 
Fig.2 Comparison between the F-distribution and the 

approximation using shrinking Chi-square 
distribution(n1=2,n2=16) 

Fig.1 and Fig.2 compares the approximate density of 
γ with the original scaled F-distribution. We can see that the 

approximation is very accurate when 2 1/ 3n n ≥ . The higher 
the ratio ,the more accurate approximation. 

From (12) , the λ  can be simplified as follows 
When 1x , 1 2 1 1[ ( ; , ) ] / 4x n n n x n xλ              (15) 

When 2 1n  , 1, 2 1 1[ ( ; ) ]x n n n x n xλ                   (16) 

The upper bound of the BER of the zero forcing can be 
computed as [11] 

2

2

0

[ ( / 2)]

( / 2) ( )

e e

e

p N E Q c

N Q c f d

γ

γ γ γ
+∞

≤

= ∫
                    (17) 

where 2c is the minimum squared Euclidean distance in 
the modulation constellation, eN is the average number of 
nearest neighbors with the minimum squared Euclidean 
distance in the constellation, and ( )Q x is the Q function. To 
obtain the BER, we consider a (15) and (16) respectively. 

1 2, 11/ 4, ( ) ( / 4 )n nF x G n xλ =                  (18) 
We can get an approximation of the density of γ as 

2

1
1 1

2 1
2

( / 4 )( ) ( / 4 , )

1 ( / 4)
4 ( )!

K M
K K M

d n af g n a n
d

M e
K M

σ γ

γγ γ
γ

σ σ γ
− +

− −=
−



                   (19) 

Substituting (19) into (17), the BER can be derived as 
follows 

2

2 1
1

2 2

0

(1/ 4)
( )!

( ) ( / 2)

K M
K M

e e

K K M

Mp N
K M

e Q c dσ γ

σ

σ γ γ γ

− +
− +

+∞ − −

−

×∫



           (20) 

Using the formula Q function 
22 1 /2

0
1

2 1/2 1 2

0

( / )

( 1)![1 (1 ) ] 2 ( )[1 (1 )
2

n x

n
n i n i i

i
i

x e Q x dx

n

σ

σ σ

+∞ − −

−
− − − +

=

−
= − + + +

∫

∑
   (21) 

Substituting (21) into (20), the BER can be simplified as 
follows 

2
1/2 1

3( 1) 2

2
1/2

2
0

[1 (1 4 ) ]
2

[2 ( )(1 (1 4 ) ) ]

K Me
e K M

K M
i K M i i

i

Np M
c

M
c

σ

σ

− − +
− +

−
− − + −

= − +

× + +∑
           (22) 

Similarly, we can get that as follows 

1 2, 11, ( ) ( )n nF x G n xλ =                              (23) 
2

1/2 1
1 2

2
1/2

2
0

[1 (1 4 ) ]
2

[2 ( )(1 (1 4 ) ) ]

K Me
e K M

K M
i K M i i

i

Np M
c

M
c

σ

σ

− − +
− +

−
− − + −

= − +

× + +∑
              (24) 

To get the asymptotic error performance, we apply Taylor 
series approximation, that is, 1/2 3 / 2 / 2x x− − , and  

21/ 1γ σ=  .In this case, we can see that the BER in (24) 
can be further approximated as 

( )

1 1
1 2

0

2 1 1

0

2( ) (1/ ) 2 ( )2
2

( )![ ( / ) ](1/ )
! !

K M
K M K M i K M i ie

e iK M
i

K M
K M K M

e
i

N Mp
c

K M iN M c
i K M

γ

γ

−
− + − + − − +

− +
=

−
− + − +

=

− +
=

−

∑

∑



(25) 

B. Simulation Results 
The following notations are used throughout the pictures 

below: asyb denote asymptotic bound; appr denote 
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approximation; simu denote simulation. QPSK modulation 
scheme is employed in two pictures. 

 
Fig.3 Comparison between the γ  and the BER 

From Fig. 3, we can see that (24) is a tight upper bound to 
the BER of the receiver in downlink with shared power 
constraint and it is also a good approximation to the BER of the 
simulation results in downlink. when 1γ  ,approximation is 
very near to the asymptotic bound.the approximation of the 
group with M=K=6 very better than the other group, because 
the ratio of n2/n1is even greater,where n1=2(K-M+1), 
n2=2M.When the number of groups(K) is increased and the 
number of users(M) is constant, the error performance is 
improved obviously. 

 
Fig.4    Comparison between the value of K minus M and the         

BER( 30( )DBγ = ) 

In Fig.4,x-axis is the value of K minus M. Y-axis is BER. 
When the value of K minus M is increased, the error 
performance is reduced obviously. When the value of K minus 
M increased to 1 while the number of users(M) is 8, the BER is 
dropped from 10-2 down to 10-4 rapidly. Nonetheless, K must 
meet the following conditions for theoretical 

arithmetic: (4 3) / 3K M≤ −  and K  is an integer. In a real 
environmen, the transmit power will increase with K increased. 
Therefore, there is a limit to the K. According to the needs of 
the real environment, we can get a good error performance by 
modulating the parameters of K. 

V. CONCLUSION  
In this paper, We use the Chi square distribution to 

calculate the BER of Spatial Modulation and study the 
influence of the number of groups and the number of receiving 
antennas on the BER. It is demonstrated that the approximation 
is very near to the simulation results. In addition, We can 
significantly reduce the BER by modulating the parameters of 
K. When K is increased by 1, the BER can be reduced by two 
orders of magnitude almost. 

ACKNOWLEDGMENT 
The work presented in this paper was supported in part by 

the Program for New Century Excellent Talents in University 
under Grant No.NCET-12-0699, National Natural Science 
Foundation of China under Grant No.61271421. 

REFERENCES 
[1] J. Mietzner, R. Schober, L. Lampe, W. H. Gerstacker, and P. A. Hoeher,

“ Multiple-antenna techniques for wireless communications – A 
compre-hensive literature survey”, IEEE Commun. Surveys Tuts., vol. 
11, no. 2,pp. 87-105, 2nd quarter 2009. 

[2] H. Huang, C. B. Papadias, and S. Venkatesan, MIMO Communication 
for Cellular Networks, Springer, Nov. 2011. 

[3] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo,“Spatial 
modulation for generalized MIMO: Challenges, opportunities and 
implementation”, IEEE Proc. of the IEEE, vol. 102, no. 1, pp. 56-103, 
Jan.2014. 

[4] M. Di Renzo and H. Haas,“Performance analysis of spatial modulation,” 
in Communications and Networking in China (CHINACOM), 2010 5th 
International ICST Conference on, 2010, pp. 1–7. 

[5] R. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun,“Spatial 
modulation,” Vehicular Technology, IEEE Trans-actions on, vol. 57, no. 
4, pp. 2228–2241, 2008. 

[6]  J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “Spatial modulation: 
optimal detection and performance analy-sis,” Communications Letters, 
IEEE, vol. 12, no. 8, pp.545–547, 2008. 

[7] S.Narayanan,M.Di Renzo,F.Graziosi, and H. Haas,“Distributed spatial 
modulation for relay networks”, IEEE Veh. Technol.Conf., pp. 1-5,Sep. 
2013. 

[8] Peel, C., Hochwald, B., and Swindlehurst, A.: ‘A vector-perturbation 
technique for near-capacity multiantenna multiuser communication-part 
I: channel inversion and regularization’, IEEE Trans. Comm., 2005, 53, 
(1), pp. 195–202 

[9] Hochwald, B., and Vishwanath, S.:‘Space–time multiple access:linear 
growth in the sumrate’. Proc. 40th Annual Allerton Conf. 
Communications, Control, and Computing, Allerton, IL,October 2002 

[10] Li,B.,and Martin, E.:‘An approximation to the F distribution using the 
Chi-square distribution’,Comput.Stat.DataAnal., 2002, 40,(1), pp.21–26 

[11] Proakis,J.:‘Digital communications’(Mcgraw Hill, New York,2008,5rd 
edn.) 

420


	Introduction
	System Model
	Zero Forcing Scheme
	Performance Anslysis
	Theoretical calculation of BER
	Simulation Results

	Conclusion
	Acknowledgment
	References




