
Study of A Highly Efficient WPS Framework

Sun Wei

Geomatics College

Shandong University of Science and Technology

Qingdao, China

e-mail:83391860@qq.com

Liu Xiaoli, Li Chengming

Digital City & Smart City team

Chinese Academy of Surveying and Mapping

Beijing, China

Abstract— The current WPS Platform exist some limitations

such as insufficient extensible ability and low concurrent requests

response efficiency. Aiming at these limitations, this paper

proposes a new WPS frame based on task distribution, and uses

task distribution system Gearman to reconstruct the WPS

process core. The concurrent pressure contrast shows that using

this new frame, it both can improve the extensible ability and the

concurrent requests response efficiency, and make the WPS

Service more open, extensible and efficiency.

Keywords— WPS; task distribution; concurrent request; OGC

I. INTRODUCTION

With the continuous development of IT technologies in
recent years, spatial information is playing an increasingly
important role in people's daily life. However, owing to their
limited variety of products, poor realtimeness, and
incompatibility between data of different standards and formats,
traditional geographic information system (GIS) service
models are far from meeting users' requirements in acquiring,
using and processing spatial information. In contrast,
geographic information service models based on Web Services
have broken free from the limitations on traditional service
models and solved the issues concerning data sharing and
interoperability. To standardize such data sharing and
interoperability, experts around the world have jointly founded
the OpenGIS Consortium (OGS), an organization committed to
making standards for the sharing of geospatial data. The OGC
Web Services team (OWS) is mainly responsible for setting
standards for open spatial information Web services and has
already published a series of geographic information service
standards. Web Processing Service (WPS), as one of these
stands, is mainly used for processing spatial data and providing
certain forms of GIS processing services for service requesters
via the Web.

Currently, the service capacity of most existing service
platforms supporting WPS is limited and fixed. For instance,
these platforms directly pack WPS-related services or provide
only a handful of processing services. Despite many efforts to
improve the expansibility of platforms by using dynamic
languages to load processing functions, some problems still
remain, such as difficult development and inflexibility of the
platform framework. Moreover, with the soaring demands for
geographic information services, WPS platforms faces the risk
of being overloaded as the amounts of service requests from

users located across the world will surely be astronomical.
Under such circumstances, the standalone WPS platform is
obviously incapable of handling service requests, thus limiting
large user visits and efficient service provision.

In order to improve the expansibility of geographic
information processing services and the responding efficiency
under concurrent requests, this paper, by using ideas of parallel
computing and service as reference, proposes an efficient task-
distribution-based WPS framework. The task distribution
software Gearman is used to reconstruct the WPS processing
kernel based on the job server so as to achieve balanced load
sharing among multiple back-end processes and the flexible
expansibility. In this way, the efficiency in handling concurrent
requests and the expansibility of WPS service platforms can be
improved.

II. WPS STANDARD AND WPS SERVICE PLATFORM

A. WPS Standard

WPS is one of the latest standards developed by OGC. It is
designed to provide the client with a series of interfaces
required by GIS processing services via the Web, by which
users can perform various operations on spatial information.
WPS enables us to publish all GIS processing functions as a
Web service, including all of its input and output parameters
and how it is triggered.

WPS adopts XML for communication between the client
and server. WPS service defines three basic operations,
providing different levels of services such as information query
and data processing. These three operations are GetCapabilities,
DescribeProcess and Execute. GetCapabilities is used by the
service user to request and obtain the metadata description of
the available data processes. DescribeProcess is used for
obtaining a description of a process including its inputs,
outputs and format. Execute calls processes according to the
parameters provided by the service user at the time of service
request, and returns the outputs. The common calling
procedures of WPS first obtain the identifier of the needed
parameters and the description of inputs, and then call services
to analyze the inputs and computing data. The data required by
the processing can be either data sent directly by the service
user to the server via the Web or the existing data on the server.
WPS standard provides an identification mechanism for spatial
reference data and standardizes input parameters and outputs.

This paper is supported by the geographic information public welfare
special project (number: 201412003, 201512020)

International Conference on Intelligent Control and Computer Application (ICCA 2016)

© 2016. The authors - Published by Atlantis Press 447

B. WPS Service Platform

The advent of WPS has made possible the sharing of
functions. Therefore, WPS and its implementation platforms
are becoming a hot topic for GIS researchers around the world.
Among the many studies abroad, 52 North WPS, a Java-based
open source project by International Institute for Aerospace
Survey and Earth Sciences (ITC) seems to be the most practical
and mature WPS service platform at the moment. In China,
there haven't been literatures documenting any mature WPS
platforms. But the many attempts in service processing based
on WPS standard have laid a solid foundation for the further
implementation of WPS platforms. Most existing studies in
China still focus on the implementation of WPS processing
services and rarely touch upon upgrading expansibility of the
WPS platform and its capacity of handling concurrent requests.

III. DESIGN AND IMPLEMENTATION OF THE TASK-DISTRIBUTION-

BASED WPS FRAMEWORK

A. Design Thinking

The main task of a WPS platform is to provide users with
standard geospatial data processing services. In essence, the
platform processes spatial data and returns outputs to users.
Therefore, the many studies on parallel computing may shed
some light on how to upgrade the expansibility of the WPS
platform and its capacity of handling massive concurrent
requests.

Parallel computing is a process of dealing with huge
amounts of computation by using multiple types of computing
resources. In the era of information explosion, the computing
environment today is expected to assign workload and utilize
computing resources more efficiently. Indeed, the computing
power of a standalone server has multiplied than it was years
ago. However, when dealing with a large amount of computing
tasks, the server executes them in an orderly first come, first
served manner, which inevitably prolongs the overall
computation and hampers the responding efficiency. So, we
decide to use parallel computing to solve this problem, that is,
assign this large amount of computing tasks to other computing
resources. In this way, constraints of storage and processing
capacity on standalone computing resources can be solved.

As more and more applications of geographic information
become popular with the masses, the number of Web-based
geographic information services is soaring, rendering the
existing standalone geographic information service platforms
incapable of handling these huge numbers of concurrent
service requests. It is possible to distribute these service
requests evenly among multiple geographic information
processing service platforms.

In practical work, however, this deployment operation itself
consumes large amounts of resources and creates multiple
interfaces, making it difficult for users to choose. So, it is still
necessary to improve the expansibility of the WPS platform
and its capacity of handling concurrent requests so that
multiple tasks can be distributed in a rational manner and
processed within one platform.

To this end, this paper, inspired by parallel computing, uses
the open source task distribution software Gearma to
reconstruct the processing kernel of WPS. The modified kernel
is able to achieve balanced load sharing when handling
concurrent service requests, and thus improve the responding
efficiently of WPS.

B. Design and Implementation

Generally, the service procedures of a WPS service are as
follows:

 The server of the platform receives a GetCapabilites
request sent from the client and then returns the
information about the services it provides from which
the user can choose;

 When the user selects a specific process, the client
sends a DescribeProcess request. The server receives
this request and then returns input and output
information needed for the process interface.

 Upon receiving the user's Execute request, the server
uses the WPS engine to parse and transfer the
parameters from the user to specific WPS processing
modules for analysis and operation. The output results
are sent back to the user.

During task execution, if multiple WPS services are to be
distributed and processed, it is required to separate service
presentation and service processing functions so as to ease
service distribution between them. In this way, the processing
and responding capability is increased while the convenience
of services to users is still ensured. Based on the job server of
Gearman, the WPS framework proposed in this paper is shown
as follows.

Fig. 1. WPS Service Frame based on Task Distribution.

It adopts a three-layer design. The top layer is the WPS
service layer, that is, the presentation layer of WPS services. It
is responsible for implementing the three interfaces of WPS
services. The presentation layer receives requests from the
client and returns service results outputted in the background.
The bottom layer is the function implementation layer of WPS
services, where specific task processing function modules
compute and process services. Processing functions can be
developed through the use of third-party libraries supporting
the implementation of processing modules compiled by any
language. The middle layer is the task distribution layer, where
the job server distributes services, transfers them to the
function implementation layer, and then sends the outputs to
the service presentation layer.

448

In the figure, the solid arrow indicates the service
transmission, the direction of the arrow points out where the
service flows to, and the size of the arrow indicates the number
of service requests. Service requests sent concurrently from
multiple clients (or a single client) converge in WPS service
layer, which parses them according to the WPS standard and
then sends the parsing results of all these concurrent services to
the job server. The job server distributes these service tasks to
different processors in the function implementation layer
according to service content. The generated outputs are
returned to the job server in real time and then sent to the WPS
service layer, where the outputs are parsed and fed back to the
client. During the information feedback, the information from
different processors can be transmitted either synchronously or
asynchronously.

The implementation of each layer is described as below.

1) WPS Service Layer
The WPS service layer mainly implements three interfaces,

namely GetCapabilites, DescribeProcess and Execute. As for
implementation, corresponding service contents are sent to the
job server according to WPS Profile (description configuration
information of the WPS Server) and Processor Profile
(description configuration information of a process).

WPS Profile and Processor Profile are described using the
YAML language. YAML is a data serialization format easily
recognizable by computers and also a data description language
similar to XML. With good interaction with scripting
languages, YAML is often used for the implementation of
configuration files. The section below will give an example of
WPS Profile.

WPS Profile
global: #
encoding: utf-8
version: 1.0.0
serverAddress: http://127.0.0.1/newmap/ogc/wps
lang: zh_CN
identification: #
title: NewMap WPS \
abstract: NewMap OGC WPS
fees: none
accessConstraints: none
keywords:[NewMap,NewMapServer4,OGC,WPS,GIS]
provider: # providerName: NewMapServer WPS
providerSite: http://www.newmapgis.com
individualName: newmap
positionName: newmap
addressDeliveryPoint: beijing
addressCity: beijing
addressCountry:China
addressAdministrativeArea: none
addressPostalCode: 100830
addressElectronicMailAddress:newmap@casm.ac.cn
phoneVoice:010-63880552
phoneFacsimile:010-63880552

2) WPS Service Layer
Task distribution layer is mainly implemented based on the

task distributor of the open source software Gearman, i.e. Job
Server. At present, Gearman is only supported on Linux. The

implementation of functions is carried out by the daemon
process Gearmand. Because Gearman provides the client
secondary development interface (Client API) and the server
secondary development interface (Server API) in various
languages such as C/C++, Java, PHP, Python and Ruby, it is
possible to use different languages to implement the interfaces
connecting Gearman to the front-end WPS service layer and
the back-end function implementation layer. This will not only
make the development much easier by dividing the
development work into smaller tasks but also greatly improve
the expansibility of the WPS framework. In this paper, we use
Python Client/Server API to build the links to the function
implementation layer. Taking analysis operation for Buffer as
an example, we parse the input parameters from the HTTP
request according to the buffer.yaml description. At the same
time, we call the Gearman Python Client API and use Gearman
communication protocols to implement the Execute interface.

input parameter
data = (input_geom, buffer_dis, output_format)
construct Gearman client
gm_client = gearman.GearmanClient(['127.0.0.1:4730'])
submit request
completed_job_request = gm_client.submit_job("buffer",

data)
check
check_request_status(completed_job_request)

3) Function Implementation Layer
Function implementation layer mainly implements the

processor handling specific processing tasks. As mentioned
previously, the Python-based Server API is used to develop the
interface. Function algorithms are developed by using the
third-party C-language-based open source library GEOS. In
Python, ctypes is used to call the C language interface. The
codes for constructing a processor are shown below.

construct worker
gm_worker = gearman.GearmanWorker(['127.0.0.1:4730'])
define wps
def task_listener_buffer(gearman_worker, gearman_job):
#register wps
gm_worker.register_task('buffer', task_listener_buffer)
wait
gm_worker.work()

IV. EXPERIMENT AND ANALYSIS

Taking the Buffer service as an example, a comparative
stress test is performed.

Test subjects: the 3-layer task-distribution-based service
platform vs. the traditional WPS platform handling service
requests in order, i.e. the single-layer WPS service platform
without the task distributor. Buffer algorithms of the two
platforms are both implemented by using the third-party open
source library GEOS.

Test data: simple polygons described using GeoJSON. The
data content is:

{"type":"Polygon","coordinates":[[[492499.27669284556,2
553443.80582409],[500907.33493374416,2551609.320389711

449

http://127.0.0.1/newmap/ogc/wps
http://www.newmapgis.com/
mailto:newmap@casm.ac.cn

7],[494639.5096996198,2545647.2427279837],[492499.27669
284556,2553443.80582409]]]}

Test environment: three groups of 10, 100, and 1,000
concurrent service requests are sent to each WPS platforms,
respectively.

Test methods: the buffer radius is set as 1,000 meters. The
traditional scheme adopts a WPS service responding to
requests in order while the proposed 3-layer WPS framework
uses 20 processors to handle service requests concurrently.

Results are shown in the figure below.

Fig. 2. Comparison of WPS concurrent request response between traditional

method and the method of this paper

It can be seen from Figure 2 that when handling 10
concurrent service requests, the response time of the traditional
method (53ms) is slightly smaller than that of our WPS
platform (61ms); when the number of concurrent requests
increases to 100, the response time of our WPS platform (73ms)
is relatively stable while that of the traditional method grows
significantly (to 289ms); in case of 1,000 concurrent requests,
the gap in response time between the two platforms grows to
be surprisingly large. It takes the traditional WPS platform
nearly 2.5s (2470ms) to return the output results of the 1,000
service requests. The long waiting time means bad user
experience. The response time of our 3-layer WPS platform, by
contrast, is only 121ms, hence a significantly better efficiency.

The findings from the test results above are quite obvious.
In handling a few concurrent service requests, the traditional
WPS platform has the power to respond fast enough, whereas
the proposed 3-layer is a bit slower owing to the additional
time incurred by network communication in the task
distribution layer. However, as the number of concurrent
service requests increases, the response time of traditional WPS
platform grows linearly because it has to execute the services
in order. Meanwhile, our proposed WPS platform assigns the
huge amounts of concurrent service requests to a number of
processors. Because the number of service responses to be
handled by each processor remains generally stable, the whole
WPS platform maintains a high responding efficiency.

From the results and analysis of the experiment, we can
infer that the processing platform constructed by the task-
distribution-based WPS framework will be superior and
responding even faster when it comes to providing services
upon concurrent requests and long-running processes (i.e. time-
consuming tasks like image re-sampling and data re-projection).

V. CONCLUSION

WPS is one of the standards released by PGC. It has solved
many constraints on the existing GIS processing services and

enabled users to analyze various types of spatial information
via the Web. Although common WPS service platforms are
able to implement a large amount of processing services, their
services and functions are limited, fixed and suffer poor
expansibility. Moreover, as the user base of geographic
information services grows, WPS platforms are faced even
greater pressure posed by numerous concurrent services. The
low responding efficiency of standalone platforms has limited
the volume of visits and the provision of highly-efficient
concurrent geographic information processing services.
Through analysis of existing WPS service platforms, this work
adopts certain ideas of parallel computing and service,
proposes an efficient WPS framework based on task
distribution, and uses Gearman to reconstruct the processing
kernel of WPS based on the job server. Consequently, it not
only supports the implementation of geographic information
processing and function development interface under various
languages, improves the service expansibility and difficulty of
development, but also separates WPS service presentation and
processing functions, thus boosting the service efficiency. The
balanced load sharing between processes of multiple back-end
services is achieved through task distribution, which has
upgraded the responding efficiency in cases of concurrent
service requests. At last, a comparative stress test is given to
verify the feasibility of the proposed framework and the
capacity of the WPS platform built with it.

Although the proposed task-distribution-based WPS
framework has improved the expansibility of geographic
information processing services and the efficiency in handling
concurrent requests, however, given the limited time and
technical capabilities, we implement the task distribution
function thereof by using the open source software Gearman.
With the continuous development of parallel computing and
GIS processing services, we believe that the task distribution
development framework based on universal message queue
will also be able to well handle task distribution. Therefore, we
will focus on developing an efficient WPS framework based on
universal message queue, strive to improve the responding
efficiency through independent research and development so as
to provide users with open, convenient and efficient geographic
information processing services via multiple channels and at
various levels.

REFERENCES

[1] Open Geospatial Consortium，Inc．About OGC: OGC Vision, Mission,
Strategic Goals [EB/OL],http://www.opengeospatial.org/ogc/vision ，
2015.

[2] Open Geospatial Consortium ， Inc ． Standards ： Web Processing
Service [EB/OL],http://www.opengeospatial.org/standards/wps，2015.

[3] Open Geospatial Consortium，Inc．OpenGIS Web Processing Service
Specification （ version0.4.0,2005 ）
[EB/OL],http://portal.opengeospatial.org/files/?artifact_id=13149&versi
on=1&format=pdf，2015.

[4] Gearman. [EB/OL], http://www.gearman.org/，2015

[5] 52 North WPS[EB/OL], http://52north.org/,2015

[6] The Future of GIS ： Open Source
GIS[EB/OL],http://opensourcegis.org/，2011.

[7] YAML[EB/OL],http://www.yaml.org/,2015

450

http://portal.opengeospatial.org/files/?artifact_id=13149&version=1&format=pdf
http://portal.opengeospatial.org/files/?artifact_id=13149&version=1&format=pdf
http://www.yaml.org/

