

Real-time Classified Hough Transform Line Detection Based on FPGA
Xinming Wang1, a, Haishu Tan2, b, Fuqiang Zhou1, cand Yao Zhao1, d

1School of Instrumentation Science and Opto-electronics Engineering, Beihang University,Beijing
100191,China

2Department of Electronic Information Engineering, Foshan University, Foshan 528000, China
axmw19890815@163.com,btanhaishu@foxmail.com, Czfq@buaa.edu.cn,

djoeAsir0560@outlook.com

Keyword: Line Detection, Gradient, Hough Transform, FPGA.

Abstract. Hough Transform (HT) is a popular tool for line detection due to its robustness to noise
and missing data. This paper proposes a classified Hough Transform (CHT)to achieve real-time line
detection on one kind of hardware circuit called FPGA. It makes full use of the gradient information
calculated in the edge detection stage compared with other Hough Transforms.Theresults show that
the proposed hardware algorithm is feasible. Asthe classified Hough Transform is divided into two
independent parts according to gradient, every edge pixel is substituted into a single calculation
formula, it accelerates computation with the same accuracy.

1. Introduction
Automatic detection of lines in images is a classic problem in computer vision. It is also relevant

to computer graphics in applications such as image-based modeling and user-interfaces[1].In
computer vision, line detection is a fundamental primitive in a wide range of applications including
camera calibration, autonomous robot navigation, industrial inspection, object recognition, line
based image stitching and remote sensing.

The Hough Transform is a standard method to find line features in an image [2]. It is an
attractive technique because of its robustness to noise and changes in the illumination level. The
main problems of Hough Transform are the large memory capacity required and the time-
consuming computations. In some applications such as robot navigation, object tracking and
auxiliary driving, real-time performance is a necessary condition. Software can’t meet the
requirement, so the implementation of Hough Transform on hardware circuit is a good choice to
achieve real-time line detection.

A lot of work has been carried out about the implementation of Hough Transform on hardware.
Cucchiara et al [3]implemented the basic HT on the edge points and the Gradient-Weighted Hough
transform (GWHT) for gray-level images on a pipelined architecture using Field Programmable
Gate Arrays (FPGA). However,these efforts have a common disadvantage that the trigonometric
calculation requires large resource and is time- consuming.

So in this paper, we achieve real-time line detection through a classified Hough Transformon one
kind of hardware circuit called FPGA. By using the improved slope-intercept equation, the
trigonometric calculation is avoided and the hardware architecture is simplified. Section 2 presents
the traditionalHough Transform principle. Section 3 describes our classified Hough Transform
based on the gradient and the proposed incremental calculation. Section 4 shows the
specificmodules of the line detection system and the proposed hardware architecture. Section 5
gives the experimental results and the evaluation.

2. Traditional Hough Transform Principle
The traditional Hough Transform uses the concept of point-line duality to locate lines in an

image. A point P in an image can be defined using a pair of coordinate (,)x y or a set of lines passing

5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 2015)

© 2016. The authors - Published by Atlantis Press 548

through it. The original method used in the HT [4] is to represent every possible line using the
slope-intercept form like Eq. (1):

c y m x= −  (1)
Another parameterization of a line is like Eq. (2) whereθ is the angle of the line and ρ represents

the closest distance between the line and the image origin.
cos sinx yρ θ θ= +  (2)

Themainproblem of the traditional Hough Transform is its computational expense. This comes
from two sources. The first is the calculation of the sine and cosine. The second is the memory
access bandwidth. To solve thisproblem caused by the unified voting scheme, we proposeone
classified Hough Transform based on the pixel gradient information which reduces the
calculationwith the same accuracy.

3. Classified Hough Transform Based on Gradient Information
Compared with other Hough Transforms which vote for parameterθ from 0 toπ , our classified

Hough Transform simplify the voting scheme using pixel gradient information. Not only does it
reduce the amount of calculation, but it also reduces the clutter in parameter space, making peak
detection more reliable. Fig. 1 shows the relationship between gradient and orientation of one line.
We divide the lines in an image into two types depending on the gradient information expressed by
Eq.(4).

X

Y Image space

Line
G

θ

xg

yg

Fig. 1 Line gradient-orientation relationship.

tan y

x

g
g

θ = (3)

,| g | | g |
,| g | | g |

x y

x y

c y m x
l x k y
= − ≤

 = − >



 (4)
The incremental form of Eq. (4) is as Eq. (5) and Eq. (6).

1 0

1 0

1n n

n n

m m m
with

c c x c x y
−

−

= + ε = − 
 = − ε = +  (5)

1 0

1 0

1n n

n n

k k k
with

l l y l x y
−

−

= + ε = − 
 = − ε = +  (6)
In Eq. (5) and Eq. (6), make Nε = 1/ 2 , where N is a natural number, and they are replaced by

shift operations [5].

4. The FPGA Implementation of Classified Hough Transform
The complete procedure of line detection is shown in Fig. 2. First, the image is processed to

detect edges. Each edge pixel then votes for the classified Hough Transform parameter space
according to gradient information. Then, detected peaksin parameter space determines candidate
lines.

549

Edge image Classified Hough
Transform

Image space Parameter space

Line parameters Detected lines
Voting Peak detection Reconstruction

Fig. 2 Line detection procedure

4.1 Edge Extraction.

Considering the accuracy and complexity, we choose Sobel filter like Fig. 3 to achieve edge
extraction and obtain the gradient [6] information. The hardware architecture of the Sobel filter is
shown in Fig. 3.

The image pixels are shifted through the line buffers[7] that create a delay line. These delay lines
feed the filter array simultaneously. With a certain threshold, we determine whether the center pixel
of the filter window is an edge point. If it is an edge point, we store the coordinates of the pixel and
the comparing result of thevalues xg and yg .

-1 0 1

-2 0 2

-1 0 1

-1 -2 -1

0 0 0

1 2 1

Gx

Gy

reg

reg

reg

Line buffer

Input stream

Line buffer

r1

r2

r3

X

X

X

reg reg reg

c1 c2 c3X X X

Output stream (gx and gy)

A
ccum

ulator

Accumulator

Fig. 3 Sobel filter and its hardware architecture

4.2 Line Parameter Estimation Based on Our Classified Hough Transform.

Since the processing speed of upstream and downstream is inconsistent, we need a buffer to store
the output of the upstream pipeline that includes the coordinates of each edge point and the
comparing result of𝑔𝑔𝑥𝑥 and𝑔𝑔𝑦𝑦which is coded by a gradient flag. We choose FIFO memory to achieve
it. .Fig.4 shows the specific architecture. Our classified Hough Transform unit operate independent
of the system clock, so it can be processed at a higher speed by using a higher frequency clock.

|gx|+|gy|>T

y

x
Vote for parameter

space R(c,m)
Vote for parameter

space R(l,k)

Edge points
bufferCoordinate

counter y

x

Gradient flag

Gradient
flag

Fig. 4 Edge points buffer unit

As mentioned above, the parameter space is divided into two parts R(c,m) and R(l,k), so two
independent hardware circuits are used for voting. Fig.5 shows the specific circuit configuration of
our classified Hough Transform. It includes three modules. One is the “line equation calculator”
module that calculates the slope (m or k) and intercept (c or l) using Eq. (6) and Eq. (7). It has three
adders, one multiplierand two multiplexers which are used to distinguish the first value of the

550

parameter sequence from the others. Whenε is defined as the form of 1/2N, the multiplier can be
substituted by a shift operator. The second is the “address block” module that transforms the two
parameters of a line to a memory address. The two parameters and the address have a one to one
relationship, so we can gain the liner parameters according to the address. The third is the“voting
memory” module. The voting memory has two operationmodes. One is increasing mode and the
other is clearing mode. This voting memory accumulates the address value in increasing mode. First,
it reads the value of a memory cell that is indicated by address, and the memory cell’s value is
increased and updated. In clearing mode, the content of the voting memory are transmitted to the
peak detector, and then the data is cleared. The address of the voting memory is sequentially
increased in clearing mode.

y x

+ ε

<<
N +

-
-1+ ε

m0 c0

mn cn

00 nn

ADDR
DO
UTDIN +

1

Parameter
Memory1

Mux Mux

Address Block

Fig. 5 Classified Hough Transform voting unit

4.3 Peak Detection.
The schematic diagram of peak detection is shown in Fig. 6.A scan in parameter space using a 3

× 3window is suitable for finding out peaks. The scanning operations about parameter (c, m) and
parameter (l, k)are parallel. Once a peak is found, we compare it with a preset threshold to
removenoise interference and reconstruct the line using parameters that correspond to the peak
point. For each edge pixel, when they have the samemi, the value of theciis treated as the
address𝐴𝐴𝑗𝑗and the value in𝐴𝐴𝑗𝑗represents the number of the points with the same line parameters
𝑚𝑚𝑖𝑖and 𝑐𝑐𝑖𝑖.If the value in the position (𝑚𝑚𝑖𝑖 ,𝐴𝐴𝑗𝑗)is one peak, the corresponding line is𝐴𝐴𝑗𝑗 = 𝑦𝑦 −𝑚𝑚𝑖𝑖 ∙
𝑥𝑥.For an image sizedH × W, the max value of𝑐𝑐𝑖𝑖is𝑐𝑐0which equals H+W，so for images sized256 ×
256, the max value of the𝐴𝐴𝑗𝑗is 512.The same rule applies to line parameters 𝑘𝑘𝑖𝑖and𝑙𝑙𝑖𝑖.

m0

mn

mi

...
...

A0 AmAj... ...

...

value value

value value

value value

value value

value value...

k0

kn

ki

...
...

A0 AmAj... ...

...

value value

value value

value value

value value

value value...

Fig.6 Peak detection schematic diagram

5. Experiments and Evaluation
5.1 ExperimentalResults of FPGA Implementation.

The whole architecture has been implemented on the Xilinx 6slx45fgg484-3. Fig. 7 shows the
system components. The image data is transmitted to FPGA from PC by a USB interface chip
named CY7C68013,and two off-chip SRAMs are used here. We use gray images sized 256× 256 to

551

test the whole algorithm. The line parametersare transmitted to PC and we reconstruct the lines on
PC. The experimental results are shown in Fig.7. The left column are the testingimages, the middle
column are the peak points and the right column are the reconstructed lines which correspond to
line parameters from FPGA.Fig.7shows that our classified Hough Transform proposed in the paper
has a good result on line detecting, especially for long lines. For shot lines,ifthe threshold in the
peak detection stage is set too high, they are ignored such as the undetected lines in b-3 and c-3.

a-1 a-2 a-3

b-1 b-2 b-3

c-1 c-2 c-3

FPGAPC

SRAM1

SRAM2CY7C68013

System components Experimental results

Fig. 7 System components and experimental results

5.2 Accuracy and Robustness of Classified Hough Transform.
To test the accuracy and robustnessof our classified Hough Transform, six hand-generated

straight lines are given with m being -1, 0, 1 and k being 0, -0.58 and 0.58 which are shown in Fig.
8. They aretestedon FPGA 10 times, and the deviation of the detected m and k are shown in
Fig.8.We can conclude that ourClassified Hough Transformare robust from the curves in Fig. 8. Our
Classified Hough Transform has a good stability and it satisfies the accuracy requirement. The
deviation is related to the measurement stepε .Ifε is little enough, the deviation can be close to zero.
When m isthe initial value𝑚𝑚0, the deviation is 0, because 𝑚𝑚0 is not affected byε .

m=-1 m=1m=0

k=0 k=-0.58 k=0.58

Fig. 8Hand-generated lines and the deviation

5.3 The Comparison between Traditional Hough Transforms and Classified Hough
Transform.

To compare our Classified Hough Transform with traditional Hough Transforms, several
meaningful parameters relative to the effect are defined as follows: maximum calculation error of
line parameter that refers toρin traditional Hough Transforms and 𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖 in Classified Hough

552

Transform, computational efficiency that represents the computed number of line parameters per
cycle, overall efficiency that represents the number of processed points per second. Then the
performance are shown in Table1. From Table 1, we can see that ourClassified Hough Transform
has a high overall efficiency for the reason that each edge pixel only needs to be substituted into a
single calculation formula and two edge points are processed within one clock circle.

Table1 Comparison between algorithms

Maximum
Calculation

Error

Computational
Efficiency

Overall
Efficiency

(M/s)

Image
Resolution

HT using CORDIC 0.177 2 384 256*256
HT Based on Parallelism 0.125 1 387 256*256

Algorithm Proposed 0.095 2(N+1) 600 256*256

5.4 Calculation Time.
Table 2 shows that when the images used for different algorithms are unified into the common

size, our classified Hough Transform has the shortest calculation time (0.71<0.90<1.30).

Table 2 Calculation time
Algorithm Calculation Time Image Resolution

algorithmin paper[5] 3.61ms 512*512
algorithm in paper[3] 15.57ms 1024*768

CHT proposed 0.71ms 256*256
5.5 Resource Consumption.

Table 3 shows the resource consumption of our classified Hough Transform algorithm on FPGA
architecture.

Table 3 Design summary

Used Available Utilization

Slice Registers 2041 54576 4.00%
Slice LUTs 1976 27288 7.00%

Bonded IOBs 30 316 9.00%
Block RAMs 7 116 6.00%

BUFG/BUFGCTRLs 3 16 19.00%

6. Conclusion
The classified Hough Transform proposed in this papercan achieve a real-time line detection on

onehardware circuit called FPGA. It has a good advantage over traditional Hough
Transforms.Thewhole line detection system and its specific hardware structure makes the proposed
algorithm be implemented on medium-sized FPGA, which is of vital importance for real time
detection.

Acknowledgements
The work was supported by the National Natural Science Foundation of China (No. 61471123).

Reference

[1] Fernandes L A F, Oliveira M M. Real-time line detection through an improved Hough
transform voting scheme[J]. Pattern Recognition, 2008, 41(1):299-314.

[2] Chen Z H, Su A W Y, Sun M T. Resource-Efficient FPGA Architecture and Implementation of
Hough Transform[J]. IEEE Transactions on Very Large Scale Integration Systems, 2012,

553

20(8):1419-1428.

[3] Cucchiara R, Neri G, Piccardi M. A real-time hardware implementation of the Hough
transform[J]. Journal of Systems Architecture, 1998, 45(1):31–45.

[4] Bailey D. Design for embedded image processing on FPGAs[M]// Wiley, 2011.

[5] Dyakonov K M. Two problems on coinvariant subspaces of the shift operator[J]. Integral
Equations & Operator Theory, 2014, 78(2):151-154.

[6] Baliga J, Grant A J, Kind A P, et al. Calculating peak-to-average power ratio reduction symbols
for multi-carrier modulated signals using a gradient-descent approach: US, US8175179[P]. 2012.

[7] Lim H. Number of tunable wavelength converters and internal wavelengths needed for
cost-effective design of asynchronous optical packet switching system with shared or output fibre
delay line buffer[J]. Iet Communications, 2013, 7(13):1419-1429.

554

	1. Introduction
	2. Traditional Hough Transform Principle
	3. Classified Hough Transform Based on Gradient Information
	4. The FPGA Implementation of Classified Hough Transform
	4.1 Edge Extraction.
	4.2 Line Parameter Estimation Based on Our Classified Hough Transform.
	4.3 Peak Detection.

	5. Experiments and Evaluation
	5.1 ExperimentalResults of FPGA Implementation.
	5.2 Accuracy and Robustness of Classified Hough Transform.
	5.3 The Comparison between Traditional Hough Transforms and Classified Hough Transform.
	5.4 Calculation Time.
	5.5 Resource Consumption.

	6. Conclusion
	Acknowledgements
	Reference

