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Abstract. Hough Transform (HT) is a popular tool for line detection due to its robustness to noise 
and missing data. This paper proposes a classified Hough Transform (CHT)to achieve real-time line 
detection on one kind of hardware circuit called FPGA. It makes full use of the gradient information 
calculated in the edge detection stage compared with other Hough Transforms.Theresults show that 
the proposed hardware algorithm is feasible. Asthe classified Hough Transform is divided into two 
independent parts according to gradient, every edge pixel is substituted into a single calculation 
formula, it accelerates computation with the same accuracy. 

1. Introduction 
Automatic detection of lines in images is a classic problem in computer vision. It is also relevant 

to computer graphics in applications such as image-based modeling and user-interfaces[1].In 
computer vision, line detection is a fundamental primitive in a wide range of applications including 
camera calibration, autonomous robot navigation, industrial inspection, object recognition, line 
based image stitching and remote sensing. 

The Hough Transform is a standard method to find line features in an image [2]. It is an 
attractive technique because of its robustness to noise and changes in the illumination level. The 
main problems of Hough Transform are the large memory capacity required and the time- 
consuming computations. In some applications such as robot navigation, object tracking and 
auxiliary driving, real-time performance is a necessary condition. Software can’t meet the 
requirement, so the implementation of Hough Transform on hardware circuit is a good choice to 
achieve real-time line detection. 

A lot of work has been carried out about the implementation of Hough Transform on hardware. 
Cucchiara et al [3]implemented the basic HT on the edge points and the Gradient-Weighted Hough 
transform (GWHT) for gray-level images on a pipelined architecture using Field Programmable 
Gate Arrays (FPGA). However,these efforts have a common disadvantage that the trigonometric 
calculation requires large resource and is time- consuming. 

So in this paper, we achieve real-time line detection through a classified Hough Transformon one 
kind of hardware circuit called FPGA. By using the improved slope-intercept equation, the 
trigonometric calculation is avoided and the hardware architecture is simplified. Section 2 presents 
the traditionalHough Transform principle. Section 3 describes our classified Hough Transform 
based on the gradient and the proposed incremental calculation. Section 4 shows the 
specificmodules of the line detection system and the proposed hardware architecture. Section 5 
gives the experimental results and the evaluation. 

2. Traditional Hough Transform Principle 
The traditional Hough Transform uses the concept of point-line duality to locate lines in an 

image. A point P in an image can be defined using a pair of coordinate ( , )x y or a set of lines passing 
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through it. The original method used in the HT [4] is to represent every possible line using the 
slope-intercept form like Eq. (1): 

c y m x= −   (1) 
Another parameterization of a line is like Eq. (2) whereθ is the angle of the line and ρ represents 

the closest distance between the line and the image origin.  
cos sinx yρ θ θ= +   (2) 

Themainproblem of the traditional Hough Transform is its computational expense. This comes 
from two sources. The first is the calculation of the sine and cosine. The second is the memory 
access bandwidth. To solve thisproblem caused by the unified voting scheme, we proposeone 
classified Hough Transform based on the pixel gradient information which reduces the 
calculationwith the same accuracy. 

3. Classified Hough Transform Based on Gradient Information 
Compared with other Hough Transforms which vote for parameterθ from 0 toπ , our classified 

Hough Transform simplify the voting scheme using pixel gradient information. Not only does it 
reduce the amount of calculation, but it also reduces the clutter in parameter space, making peak 
detection more reliable. Fig. 1 shows the relationship between gradient and orientation of one line. 
We divide the lines in an image into two types depending on the gradient information expressed by 
Eq.(4). 
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Fig. 1 Line gradient-orientation relationship. 
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The incremental form of Eq. (4) is as Eq. (5) and Eq. (6). 
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In Eq. (5) and Eq. (6), make Nε = 1/ 2 , where N is a natural number, and they are replaced by 

shift operations [5]. 

4. The FPGA Implementation of Classified Hough Transform 
The complete procedure of line detection is shown in Fig. 2. First, the image is processed to 

detect edges. Each edge pixel then votes for the classified Hough Transform parameter space 
according to gradient information. Then, detected peaksin parameter space determines candidate 
lines. 
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Fig. 2 Line detection procedure 

 
4.1 Edge Extraction. 

Considering the accuracy and complexity, we choose Sobel filter like Fig. 3 to achieve edge 
extraction and obtain the gradient [6] information. The hardware architecture of the Sobel filter is 
shown in Fig. 3. 

The image pixels are shifted through the line buffers[7] that create a delay line. These delay lines 
feed the filter array simultaneously. With a certain threshold, we determine whether the center pixel 
of the filter window is an edge point. If it is an edge point, we store the coordinates of the pixel and 
the comparing result of thevalues xg and yg . 
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Fig. 3 Sobel filter and its hardware architecture 

 
4.2 Line Parameter Estimation Based on Our Classified Hough Transform. 

Since the processing speed of upstream and downstream is inconsistent, we need a buffer to store 
the output of the upstream pipeline that includes the coordinates of each edge point and the 
comparing result of𝑔𝑔𝑥𝑥 and𝑔𝑔𝑦𝑦which is coded by a gradient flag. We choose FIFO memory to achieve 
it. .Fig.4 shows the specific architecture. Our classified Hough Transform unit operate independent 
of the system clock, so it can be processed at a higher speed by using a higher frequency clock. 
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Fig. 4 Edge points buffer unit 

As mentioned above, the parameter space is divided into two parts R(c,m) and R(l,k), so two 
independent hardware circuits are used for voting. Fig.5 shows the specific circuit configuration of 
our classified Hough Transform. It includes three modules. One is the “line equation calculator” 
module that calculates the slope (m or k) and intercept (c or l) using Eq. (6) and Eq. (7). It has three 
adders, one multiplierand two multiplexers which are used to distinguish the first value of the 
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parameter sequence from the others. Whenε is defined as the form of 1/2N, the multiplier can be 
substituted by a shift operator. The second is the “address block” module that transforms the two 
parameters of a line to a memory address. The two parameters and the address have a one to one 
relationship, so we can gain the liner parameters according to the address. The third is the“voting 
memory” module. The voting memory has two operationmodes. One is increasing mode and the 
other is clearing mode. This voting memory accumulates the address value in increasing mode. First, 
it reads the value of a memory cell that is indicated by address, and the memory cell’s value is 
increased and updated. In clearing mode, the content of the voting memory are transmitted to the 
peak detector, and then the data is cleared. The address of the voting memory is sequentially 
increased in clearing mode. 
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Fig. 5 Classified Hough Transform voting unit 

4.3 Peak Detection. 
The schematic diagram of peak detection is shown in Fig. 6.A scan in parameter space using a 3

× 3window is suitable for finding out peaks. The scanning operations about parameter (c, m) and 
parameter (l, k)are parallel. Once a peak is found, we compare it with a preset threshold to 
removenoise interference and reconstruct the line using parameters that correspond to the peak 
point. For each edge pixel, when they have the samemi, the value of theciis treated as the 
address𝐴𝐴𝑗𝑗and the value in𝐴𝐴𝑗𝑗represents the number of the points with the same line parameters 
𝑚𝑚𝑖𝑖and 𝑐𝑐𝑖𝑖.If the value in the position (𝑚𝑚𝑖𝑖 ,𝐴𝐴𝑗𝑗)is one peak, the corresponding line is𝐴𝐴𝑗𝑗 = 𝑦𝑦 −𝑚𝑚𝑖𝑖 ∙
𝑥𝑥.For an image sizedH × W, the max value of𝑐𝑐𝑖𝑖is𝑐𝑐0which equals H+W，so for images sized256 ×
256, the max value of the𝐴𝐴𝑗𝑗is 512.The same rule applies to line parameters 𝑘𝑘𝑖𝑖and𝑙𝑙𝑖𝑖. 
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Fig.6 Peak detection schematic diagram 

5. Experiments and Evaluation 
5.1 ExperimentalResults of FPGA Implementation. 

The whole architecture has been implemented on the Xilinx 6slx45fgg484-3. Fig. 7 shows the 
system components. The image data is transmitted to FPGA from PC by a USB interface chip 
named CY7C68013,and two off-chip SRAMs are used here. We use gray images sized 256× 256 to 
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test the whole algorithm. The line parametersare transmitted to PC and we reconstruct the lines on 
PC. The experimental results are shown in Fig.7. The left column are the testingimages, the middle 
column are the peak points and the right column are the reconstructed lines which correspond to 
line parameters from FPGA.Fig.7shows that our classified Hough Transform proposed in the paper 
has a good result on line detecting, especially for long lines. For shot lines,ifthe threshold in the 
peak detection stage is set too high, they are ignored such as the undetected lines in b-3 and c-3. 
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Fig. 7 System components and experimental results 

5.2 Accuracy and Robustness of Classified Hough Transform. 
To test the accuracy and robustnessof our classified Hough Transform, six hand-generated 

straight lines are given with m being -1, 0, 1 and k being 0, -0.58 and 0.58 which are shown in Fig. 
8. They aretestedon FPGA 10 times, and the deviation of the detected m and k are shown in 
Fig.8.We can conclude that ourClassified Hough Transformare robust from the curves in Fig. 8. Our 
Classified Hough Transform has a good stability and it satisfies the accuracy requirement. The 
deviation is related to the measurement stepε .Ifε is little enough, the deviation can be close to zero. 
When m isthe initial value𝑚𝑚0, the deviation is 0, because 𝑚𝑚0 is not affected byε . 

m=-1 m=1m=0

k=0 k=-0.58 k=0.58

 
Fig. 8Hand-generated lines and the deviation  

 
5.3 The Comparison between Traditional Hough Transforms and Classified Hough 
Transform. 

To compare our Classified Hough Transform with traditional Hough Transforms, several 
meaningful parameters relative to the effect are defined as follows: maximum calculation error of 
line parameter that refers toρin traditional Hough Transforms and  𝑐𝑐𝑖𝑖 , 𝑙𝑙𝑖𝑖 in Classified Hough 
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Transform, computational efficiency that represents the computed number of line parameters per 
cycle, overall efficiency that represents the number of processed points per second. Then the 
performance are shown in Table1. From Table 1, we can see that ourClassified Hough Transform 
has a high overall efficiency for the reason that each edge pixel only needs to be substituted into a 
single calculation formula and two edge points are processed within one clock circle. 

Table1 Comparison between algorithms 

 

Maximum 
Calculation 

Error 

Computational 
Efficiency 

Overall 
Efficiency        

(M/s) 

Image 
Resolution 

HT using CORDIC 0.177 2 384 256*256 
HT Based on Parallelism 0.125 1 387 256*256 

Algorithm Proposed 0.095 2(N+1) 600 256*256 
 

5.4 Calculation Time. 
Table 2 shows that when the images used for different algorithms are unified into the common 

size, our classified Hough Transform has the shortest calculation time (0.71<0.90<1.30).  

Table 2 Calculation time 
Algorithm Calculation Time Image Resolution 

algorithmin paper[5] 3.61ms 512*512 
algorithm in paper[3] 15.57ms 1024*768 

CHT proposed 0.71ms 256*256 
5.5 Resource Consumption. 

Table 3 shows the resource consumption of our classified Hough Transform algorithm on FPGA 
architecture. 

Table 3 Design summary 

 
Used Available Utilization 

Slice Registers 2041 54576 4.00% 
Slice LUTs 1976 27288 7.00% 

Bonded IOBs 30 316 9.00% 
Block RAMs 7 116 6.00% 

BUFG/BUFGCTRLs 3 16 19.00% 

6. Conclusion 
The classified Hough Transform proposed in this papercan achieve a real-time line detection on 

onehardware circuit called FPGA. It has a good advantage over traditional Hough 
Transforms.Thewhole line detection system and its specific hardware structure makes the proposed 
algorithm be implemented on medium-sized FPGA, which is of vital importance for real time 
detection. 
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