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Abstract. The application of complex networks in optimization field has received increasing 
attention recently. This paper proposes a discrete small-world optimization algorithm (DSWOA) 
based on the small-world network theory and Six Degrees of Separation principle in sociology. The 
DSWOA model is composed of a lot of short-range contacts and few long-range contacts. In this 
algorithm, the short-range contactsachieve the fast searching and the long-range contacts can 
accelerate the convergence rate. Next, extensive computational experiments are conducted to 
compare the DSWOA with other algorithms for the permutation flowshop scheduling problems 
(PFSP) by using the Taillard instances[1]. In the makespan tests, the results show that DSWOA has 
a stronger ability of quick searching, especially in the small-size problems. From the analysis results, 
the DSWOA has higher search efficiency than other algorithms. 

1 Introduction and Literature review 
In recent years, the complex network topology, especially the small-world network which is 

between the regular network and the random network, has gained the interests of many researchers. 
The earliest research on the small-world originated in 1929 from a Hungarian writer F. Karinthy, 
who conjectured that in this world any two persons could be related by a chain composed of five 
contacts[2]. In 1967, S.Milgram confirmed this conjecture by the famous letters delivery 
experiments and proposed the theory of Six Degrees of Separation [3]. 

Everyone looks for his target through acquaintances step by step exists in social and economic 
network widely, which was known as small-world effect[4]. To explain the small-world effect of 
Six Degrees of Separation, Watts and Strogatz presented the famous concept and model of W-S 
small-world network[4]. Kleinberg made some improvements to the W-S model. He constructed a 
new model on the basis of the two-dimensional grid which is more reasonable for the description of 
small-world phenomenon[5].Then, in order to make the small-world network close to the real social 
network completely, Watts and Dodds et al. improved the basic W-S model with the multiple 
categories method[6]. 

As the small-world network theory system is gradually maturing, it has begun to be used in the 
optimization field. Walsh studied the application of the small-world network on the problem of 
graph theory search. He improved the small-world networks to adapt the graph theory search[7]. 
Chen and Liu et al.pointed out that different values of the spread probability parameters will affect 
the quick searching feature of small-world network[8]. A small-world topology structure was 
applied in PSO byCui and Chu et al. to observe the behavior of swarm. This method has made PSO 
more efficient than before[9]. Li and Zhang et al. proposed a decimal-coding small world 
optimization algorithm based on Kleinberg’s model and demonstrated its stability and fast 
convertible rate for high-dimensional optimization problems[10]. Li and Shao et al.developed a 
small-world hierarchical tree model aiming to solve the continuous optimization problem[11]. 

From these review, there are yet no reports about the application of the small-world network in 
discrete sequencing optimization problems.Inspired by the application of the small-world effect, 
this paper proposes a discrete small-world optimization algorithm (DSWOA). In DSWOA, all 
individuals are connected by short-range and long-range contacts. The short-range contacts help 
achieve fast search, while the long-range contact can accelerate the convergence rate. In order to 
verify the DSWOA, the experimental calculation for the permutation flowshop scheduling 
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problemis described in Section 3 and the results show that the DSWOA has better searching ability 
than many other algorithms. 

2 The permutation flowshop scheduling problem 
This paper mainly concerns the discrete optimization sequencing problem called permutation 

flowshop scheduling problem (PFSP). Flowshops are generally used to model serial manufacturing 
processes. The flowshop consists of several machines on which jobs are processed in a sequential 
manner. In the PFSP, all the jobs follow the same processing order on each machines and every job 
is independent to each other[12]. 

Suppose there are n  jobs and m  machines. Let ( , )t i j , 1 , 1i n j m≤ ≤ ≤ ≤  be the processing 
time of job i  on the machine j  and 1( , . . . , )nπ π π= be a job permutation (i.e., processing order 
of the jobs). Then the completion times ( , )iC jπ  are calculated as follows: 

0( , ) 0C jπ = , ( ,0) 0iC π =                 (1) 

1( , ) max{ ( , ), ( , 1) ( , )}; 1,2, ..., ; 1, 2, ...,i i i iC j C j C j t j i n j mπ π π π−= − + = =      (2) 
The makespan is max ( ) ( , )nC C mπ π= . 

The objective is to find a permutation π ∗  that minimizes max ( )C π . 

3 Discrete small-world optimization algorithm 
An algorithm with the strong capability of global searching and fast convergence speed is critical 

to solve the discrete sequencing optimization problems. In this paper, inspired by the intelligent 
experiments of Milgram’s letters delivery[3], we propose a fast discrete small-world optimization 
algorithm. Under this network structure, while providing some special delivering policies, the 
optimization of discrete problem will be searched in the small-world network. 

In the DSWOA, each solution under consideration is called an envelope node. The basic idea of 
this algorithm shown in Fig. 1is described as follows: 

Initialize algorithm parameters, such as the number of 
iterations, envelopes and contacts nodes

Randomly create m initial envelope nodes

Output optimal results and scheduling solutions

take the value of contact node and find the best envelope node

Extracting a certain number of n short-range contact nodes and 
k long-range contacts nodes

Update all envelope nodes

Whether meet the end conditions
NoYes

 
Fig.1 Flowchart of discrete small-world optimization algorithm 

Step 1. Set the parameters, including the number of short-range and long-range contact nodes, 
the iteration times and so on. 

Step 2. Initialize the population by randomly generating some solutions (or envelope nodes). 
Step 3. Inquire the neighbor nodes. A certain number of short-range and long-range contact 
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nodes are inquired for each envelope node in the original solution space and the mapping space.  
Step 4. Evaluate the inquired contact nodes by calculating their object values. 
Step 5. Deliver envelope nodes. Select the best contact node to replace the current envelope node 

when it is better than the current envelope node. 
Step 6. If the termination criterion is reached, output the best solution; otherwise go to step 3. 

3.1 Encoding and initialization 
In the DSWOA, supposing n  is the number of envelope nodes and m  is the coding length of 

the sequencing problem, for each node, the solution is represented as 1 2{ , ,..., }i i i i mX x x x= where 
, 1, 2,..., , 1, 2,...,ijx Integer i n j m∈ = = . 

The initial cluster iX  is composed of the original envelope nodes, and each node represents 
candidate solution to the actual problem. The envelopes are delivered following some strategies and 
will be gradually close to the optimal goal. 
3.2 Definition and selection of short-range and long-range contact 

The small-world network models proposed by Watts and Kleinberg defined the short-rangeand 
long-range contacts for each individual. In the DSWOA, these two contacts are redefined to search 
for the optimization objects. 

Generally, the Hamming distance is used to measure the relationship for the discrete sequence 
[13]. For any two different discrete sequences 1 2{ , ,..., }nU u u u= and 1 2{ , ,..., }nV v v v= , their 

Hamming distance can be computed as 
1
( )

n

i i
i

Hd u v
=

= ≠∑ . It is obvious that 2 Hd n≤ ≤ . In the 

DSWOA, we define that two sequences are short-range contact when 2Hd = ; the others are 
long-range contact. 

For the discrete sequence, the short-range contact nodes can be obtained with arbitrarily 
swapping the value in two different positions. Each short-range contact node has an equal 
opportunity to be selected which is shown in Fig. 2. The large number of short-range contacts can 
help the DSWOA achieve fast search. 

This paper use three different moving methods described in Fig. 3. Operator 2M  selects a point 
and inserts it between two adjacent points. Operator 3M elects a subsequence of points to insert. 
Operator 4M selects a subsequence of points and relocates these points in the reverse order. For 
example, when the Hamming distance is selected as 6Hd =  by roulette wheel method, the 
long-range contact nodes can be selected by any operator method. 

The envelope node The short-range contacts node

Hd=2

Hd=2

1 2 43 5 876 9 1 2 54 6 37 98

1 2 573 91 2 43 5 876 9 46 8

M1 (Swap method)

The envelope node The long-range contacts node

1 2 78 6 345 91 2 43 5 876 9

1 2 876 91 2 43 5 876 9 43 5

1 2 43 5 876 9 1 2 43 5 76 9

M2 (Single Insertion)

8

M3 (Block Insertion)

M4 (Reverse Location)

Hd=6

Hd=6

Hd=6  
Fig.2The short-range contact nodes        Fig. 3 Three different long-range contact nodes 

3.3 Delivering the envelope node 
In the iterative process of DSWOA, the envelope nodes update in each generation. When 

delivering the envelope, we select a fixed number of short-range contact nodes generated by the 
operator 1M , as well as some long-range contact nodes by the operator 2M , 3M  and 4M  in 
Section 3.2. Finally, we compare the selected contact nodes with the envelope node. The envelope 
node with better objective value replaces the current node. 
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3.4 Experimental results for DSWOA 
To evaluate the effectiveness of DSWOA and compare its performance with other algorithms, in 

this section we conduct extensive computational experiments for the permutation flowshop 
scheduling problems (PFSPs) by using the Taillard instances (Taillard, 1993). During the test, the 
algorithm is realized in Java and the experiments are performed on a PC (Intel Core 2.53 GHz). 

In our experiments, we compare our algorithm with eight other algorithms including Self-guided 
GA and SGA, ACGA and MGGA, GMA, PSOspv, CPSO and DDE[14, 15]. The parameters of 
DSWOAare set as: envelope number is 50N = , the short-range contact nodesnumber is 30SNO = , 
the long-range contact nodesnumber is 10LNO = , and the iteration number is 100G = . The total of 
110 instances are calculated for 10 times independently. 

The average error ratio ( ER ) is used to evaluate the algorithm performance. ER is computed as 
follows: 

max ( )C X UER
U

−
= ,                 (3) 

Where X  is the value of makespan generated by an algorithm, whereas U is the value of best 
known or optimal solution provided by Taillard [1]. 

We obtain the experimental results based on these tests. Table 1 shows the statistics of the 
average ER  values of all the algorithms on all the 110 test instances. In this table, the bold value 
is the best solution of each instance in all algorithms. The average CPU time for each instances is 
12.62s. The results show that the DSWOA outperforms SGA, MGGA, ACGA, Self-guided GA, 
PSOspv, CPSO and GMA in terms of the ER  value in most cases. And it is also better than DDE for 
the small-size problems but inferior to DDE in large-size problems.  

From the test results, it’s easy to find that the DSWOA has stronger searching ability for the 
small-size sequence problem. This is primarily due to that individuals have more percentages of 
short-range contacts in small-size sequencing problems than in large-size sequencing problems. In 
order to improve the DSWOA’s performance in solving large-size sequencing problem, we should 
consider more domain knowledge such as using local search method or increasing the number of 
contact nodes to enhance the search ability of DSWOA. 

Table 1Average error ratios of all the 9 algorithms on Taillard’s instances 
N m SGA MGGA ACGA Self-guided GA DSWOA PSOspv DDE CPSO GMA 
20 5 1.02 0.81 1.08 1.10 0.02 1.75 0.46 1.05 1.14 
 10 1.73 1.40 1.62 1.90 0.37 3.25 0.93 2.42 2.30 
 20 1.48 1.06 1.34 1.60 0.37 2.82 0.79 1.99 2.01 

50 5 0.61 0.44 0.57 0.52 0.17 1.14 0.17 0.90 0.47 
 10 2.81 2.56 2.79 2.74 1.97 5.29 2.26 4.85 3.21 
 20 3.98 3.82 3.75 3.94 3.27 7.21 3.11 6.40 4.97 

100 5 0.47 0.41 0.44 0.38 0.23 0.63 0.08 0.74 0.42 
 10 1.67 1.50 1.71 1.60 1.18 3.27 0.94 2.94 1.96 
 20 3.80 3.15 3.47 3.51 3.90 8.25 3.24 7.11 4.68 

200 10 0.94 0.92 0.94 0.80 0.96 2.47 0.55 2.17 1.10 
 20 2.73 3.95 2.61 2.32 3.95 8.05 2.61 6.89 3.61 
 Total 1.93 1.82 1.85 1.85 1.49 4.01 1.38 3.40 2.35 

4 Conclusions 
Inspired by the small-world network theory and the Six Degrees of Separation,we propose a 

discrete small-world optimization algorithm and use it to solve the discrete sequencing problem. 
This algorithm is suitable for heuristic methods to search targets efficiently. The large of short-range 
contacts help the DSWO fast searching and the long-range contacts can accelerate the convergence 
rate.The experimental results of minimizing the makespan show that the DSWOA is very promising. 
It outperforms SGA, MGGA, ACGA, Self-guided GA, PSOvns, CPSO and GMA in terms of the 
ER value. These test results sufficiently show that DSWOA has a strong ability of quick searching, 
especially in the small-size sequence problem. 
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In the future, we will continue to improve the DSWOA for discrete problem and combine more 
local search methods to perfect the solving performance in large-size problem. And we also plan to 
extend the applicability of the discrete small-world optimization algorithm to other scheduling 
problems, sequentially make the DSWOA be applied in more extensive fields. 
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