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Abstract. In this paper, a novel visual tracking algorithm named as Informative random fern - 
Tracking Learning Detection (IRF-TLD) has been proposed. Instead of a binary comparison in the 
standard random fern of TLD, we use the real value feature and Gaussian random projection to 
acquire the advantages of high accuracy and low memory requirement. Experimental results on 
challenging sequences have demonstrated the superior performance of our IRF-TLD when compared 
with several state-of-the-art tracking algorithms. 

1. Introduction 
Visual tracking is one of the most important problems in computer vision. It is the basis for many 

applications such as surveillance, human computer interaction and action recognition, etc. Many 
methods have been proposed for visual tracking over the past few decades. Generally speaking, most 
trackers can be divided into two categories: generative models and discriminative models. Generative 
models [1] are typically formulated as searching the most similar image region with minimal 
reconstruction error. Owing to the fact that they concern only about the appearance of the object, the 
generative models often fail in cluttered background. For discriminative models [2], tracking is 
treated as a binary classification task that finds the decision boundary between the target and the 
background. Compared with generative models, discriminative models are usually more resistant to 
cluttered background since they explicitly sample image patch from the background as negative 
example to train the classifier. 

Kalal et.al [3] proposed a novel approach called Tracking Learning Detection(TLD), in which 
tracking and detection are independent processes that exchange information via learning. Random 
fern [4] classifier is one important component of the cascade detector in TLD and shows excellent 
performance. However, there exist some potential problems with it. First, the comparison of each 
pixel pair produces only two outputs, 0 or 1, leading to lots of information loss. In addition, the 
random fern classifier in TLD requires enormous memory, having an exponential relationship with 
the number of pixel pairs in a fern. To address the issues, we extend the TLD based on informative 
random fern which produces the real value feature for a fern based on subtraction and Gaussian 
projection.  

The rest of this paper is organized as follows. In Section 2, the introduction of random fern is 
introduced. The proposed method IRF-TLD is presented in Section 3. Section 4 shows the 
experimental results, followed by conclusion in Section 5. 

2. Preliminaries 
In random fern, the simple intensity comparisons between pixel pairs are chosen as the binary 

features. Let if , 1,..,i N=  denotes the  binary feature that extracted from an image patch which to 
classify. The class c  for this image can be described by 

 1 2arg max ( | , ,..., )Nc C
c p c f f f

∈
=  (1) 

Here, C  is the set of all classes. Using Bayes’ formula, the posterior can be written as 
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We take the denominator as a constant and assume the probability ( )p c  is uniform, then (1) is 
equal to 

 1 2arg max ( , ,..., | )Nc C
c p f f f c

∈
=  (3) 

Ozuysal et al. [4] proposed to divide the features into several groups, and assumed the different 
groups are independent of each other. Formally, 
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Where S  is the number of pixel pairs in each fern and iF  is a group of features, named as a fern. 
T N S=  is the total number of ferns. In practice, S  cannot be too small, thus the memory occupation 
is very enormous. 

3. IRF-TLD algorithm  

3.1 IRF-TLD framework 
Our whole IRF-TLD tracking approach is summarized in Fig.1. It inherits the framework of TLD 

which decomposes the long-term tracking task into tracking, detection and learning. The target is 
followed by a tracker from frame to frame and its motion is estimated using the Lucas-Kanade tracker 
extended with failure detection. The task of learning is to initialize the cascade detector in the first 
frame and update it in run-time using the P-N experts. In original TLD, the cascade detector, which is 
responsible for selecting the most possible target candidate in each frame, consisted of three stages: (i) 
patch variance: this stage can rejects those patches with gray-value variance smaller than 50 percent 
of the variance of the target patch; (ii) random fern: it performs a quantity of pixel comparisons on a 
patch resulting in a binary code, which indexes to an array of posteriors. (iii) nearest neighbor: it is 
the last stage to divided each candidate patch into target object or background by appearance using 
Normalized Correlation Coefficient. 

In our IRF-TLD, the tracker and learning methods from TLD are adopted. Meanwhile, some 
improvements are made in the cascade detector. Instead of the binary comparison in the original 
random fern of TLD, we introduce the informative random fern classifier to improve the robustness 
of the detector. The more informative real value from the subtraction is used in our method. Moreover, 
a random projection is utilized to map the value of each fern derived from feature value to a 
parametric distribution, specifically, Gaussian distribution, in which the classification is done. In the 
following, the proposed IRF classifier will be described in detail from three steps: feature formation, 
classification with probability and online update. 

 
Fig. 1 Framework of IRF-TLD tracking algorithm 

3.2 Feature Formation 
We adapt the real value feature from [5], i.e., the real value feature ,i jf  described in Eq.(5) is 

extracted from pixel pair j  of fern i : 
 , 1 2( ( , )) ( ( , )),i jf I d i j I d i j= −  (5) 

Where ( )I d  represents the intensity of an image patch I  at d . 1( , )d i j  and 2 ( , )d i j  denote the 
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coordinates of the randomly generated pixel pair j  of fern i . Obviously, the real value feature can 
preserve more information about the intensity difference between two pixels because of ,i jf ∈  
instead of { }, 0,1i jf ∈ . 

Since the feature ,i jf  is a real value, it’s necessary to “encode” all real values in each fern into a 
single real value to simplify the subsequent classification. A theoretical basis for this idea has been 
stated by Johnson-Lindenstrauss(JL) lemma [6] that with high probability the distances between the 
points in the high-dimensional space are preserved if they are projected onto a randomly selected 
low-dimensional subspace. Besides, the literature [6] also proved that for k-sparse data (e.g, image 
and audio signal), the random matrix such as Gaussian matrix satisfying the JL lemma holds true for 
the restricted isometry property in compressive sensing. Therefore, we use the Gaussian matrix to 
facilitate efficient projection from feature values of different pixel pairs into a single real value in this 
paper. Formally, 

 ,
1

S

i j i j
j

F r f
=

= ∑  (6) 

Where ~ (0,1)jr N  is a real value generated randomly according to a Gaussian distribution. 
Besides, comparing the proposed IRF with the standard random ferns method, we can find that the 

IRF has the advantages of requiring a constant and much lower memory from the following analysis. 
Assuming that the number of classes is 2γ = (foreground and background) and the real value feature 
is stored in a single precision type which occupies 4 Bytes. Then the memory requirement is 

4OurMEM T γ= × × . While in the standard random ferns method used in TLD, a specific binary code is 
stored in an integral type which occupies 4 Bytes. The memory requirement is 2 4S

TLDMEM T γ= × × × . 
It’s clear that the standard random fern method in TLD needs memory 2S  times more than the 
proposed IRF method. 
3.3 Classification with probability: 

In IRF, the output iF  is calculated as a single real value produced randomly on the basis of 
Gaussian distribution. For simplicity, we model the probability ( | )ip F c  as a Gaussian distribution 
with parameters ( ),c c

i iµ σ  for fern i  of class c . Whereupon, the discriminative function is 
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Where we assume uniform prior ( 1) ( 0)p c p c= = = , { }0,1c∈ is a binary variable which represents the 
sample label and 1 2{ , ,..., }TF F F F=  is a set containing the value of all ferns for an image patch. 

The IRF classifies the patch as the target if the corresponding value ( )H F  is larger than zero. 
3.4 Online Update:  

To integrate our IRF feature that the value of each fern is modeled as a Gaussian distribution with 
parameter ( ),c c

i iµ σ  to the target model, we simplify the update of the classifier as a parameter update: 

 
,

2 , 2 , 2

(1 )

( ) (1 )( ) (1 )( )

c c c new
i i i

c c c new c c new
i i i i i

µ λµ λ µ

σ λ σ λ σ λ λ µ µ

← + −

← + − + − −
 (8) 

Where λ  is the learning rate, , [ | ]c new
i iE F cµ =  and , 2 2[( | ) ] ( [ | ])c new

i i iE F c E F cσ = −  are estimated from the 
training samples that are generated by P-N experts at current frame. 

4. Experiments 
Our ITTS is implemented in C++, which runs at 25 frames per second on an Intel Dual-Core 

3.30GHz CPU with 4G RAM. Three state-of-the-art algorithms on 6 fully-annotated video sequences 
included TLD [3], OAB [7] and CT [2] are used to validate the performance of our IRF-TLD 
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algorithm. All of these algorithms are evaluated in the one-pass evaluation(OPE) [8], and these 
sequences with the corresponding ground truth files and the compared code library are available on 
the website: http://visual-tracking.net. In all the experiments, the total number of ferns is set to 50T = , 
the number of pixel pairs in a fern is decided as 4S = , and the learning rate λ  is selected as 0.85. 
4.1 Evaluation Metric 

We use the precision plots and success plots [8] to evaluate the robustness of tracking algorithms 
quantitatively. The precision plot shows the percentage of frames whose estimated center locations 
are within the given threshold distance of the ground truth. To compare the performances of different 
algorithms, the score for the threshold equal to 20 pixels is used to be the representative precision 
score. Meanwhile, the success plot is based on the overlap ratio that is Area( ) Area( )t a t aOS b b b b=   , 
where tb  is the tracked target box and ab  denotes the ground truth box. The success plot shows the 
ratios of frames with 0OS t>  throughout all threshold 0 [0,1]t ∈ . The area under curve(AUC) of each 
success plots serves as the first measure to rank the tracking algorithms in the following. 
4.2 Result and Analysis 

The overall performance of the 4 tracking algorithms based on success plots and precision plots 
are illustrated in Fig.2. According to the experimental results, our algorithm achieves outstanding 
performances in both the metric overlap and center location error: in the success plot, it achieves an 
AUC score of 0.581 and ranks 1st. Moreover, our IRF-TLD algorithm outperforms TLD by 6.8%. 
Meanwhile, the overall precision of our IRF-TLD at 79.3% is still the highest among all algorithms, 
yet beating TLD by 1.1%. 

 
Fig. 2 The overall performance of the 4 tracking algorithms on all video sequences 

To further analyze the performance of IRF-TLD, the AUC scores and precision scores for each 
sequence are also shown in Table 1. Some sampled results on sequences are illustrated in Fig.3. From 
Table 1, we can observe that IRF-TLD performs best on 4 out of 6 sequences (the italic fonts indicate 
the best performance). Note that there exist many challenging factors in these videos that IRF-TLD 
achieves favorable results. For instance, the sequences faceocc2, carscale, and sylverster have the 
attributes of scale variation and (in-)out-of plane rotation, in which faceocc2 and carscale also have 
occlusion attribute, thereby making them far more challenging. Notwithstanding, IRF-TLD performs 
persistently well from beginning to end. 

Table 1 The AUC/Precision scores on each sequence 
Sequences Our TLD OAB CT 
Faceocc2 0.619/0.792 0.611/0.856 0.593/0.708 0.602/0.681 
Sylvester 0.676/0.946 0.666/0.949 0.557/0.741 0.659/0.901 
Carscale 0.575/0.718 0.452/0.853 0.398/0.663 0.433/0.718 
Skating 0.366/0.495 0.190/0.318 0.394/0.688 0.086/0.090 

Doll 
Deer 

0.561/0.918 
0.690/0.915 

0.566/0.983 
0.590/0.732 

0.533/0.874 
0.640/0.958 

0.455/0.684 
0.039/0.042 

IRF-TLD not merely inherits the original tracking framework of TLD, the superiority of our 
IRF-TLD algorithm compared with TLD mainly lies in that: its cascade detector performance is 
further improved by combining the IRF classifier. In addition, IRF-TLD produces the real value for a 
fern based on subtraction and Gaussian projection, leading to a more informative result than the 
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binary feature used in the TLD. Hence, the maintaining of the diversity of real value features enables 
IRF-TLD to practice excellently in the presence of significant drastic appearance changes. 

5 Conclusion 
In this paper, we have proposed a novel tracking method based on TLD and Informative random 

fern. The proposed method has advantages of high accuracy and low memory requirement, thus is 
very appropriate for embedded systems. Experimental results show that it performs better than some 
other methods on most video sequences. 

 
Fig. 3 Screenshots from some of some sampled tracking results. 
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