

Firmware Design of the USB3.0 Data Transfer Interface

Jie Liu1,a, Weihua Chen2,b, Jietao Diao1,c and Zhaolin Sun1,d
1School of Electronic Science and Engineering, National University of Defense Technology,

Changsha 410073, China
2Meteorological and Hydrological Center of Nanjing Military Region, Nanjing 210016, China

a1031815609@qq.com,bchenweihua@163.com,cjietaodiao@nudt.edu.cn,dsunzhaolin@nudt.edu.c
n

Keywords: firmware design, USB3.0, transfer speed, EZ-USB FX3.

Abstract. USB (Universal Serial Bus) as a computer peripheral bus standards, is a flexible and
efficient bus interface. The new version of USB3.0 theoretical transfer speed is up to 5.0Gbit/s,
which greatly increases the data transfer bandwidth while retaining its inherent advantages. It’s very
suitable for high-speed data acquisition field. But in the actual use of that, data transfer speed is
limited that USB devices can’t meet the actual requirements. In this paper, we designed the firmware
of the controller to give full play to the characteristics of the chip by using GPIF II digital
transmission mode and establishing an automatic DMA channel, thereby improving the actual data
transfer rate. Test results show that the real effective transfer rate is up to 350 Mbyte/s, greatly
reducing the transfer time.

1. Introduction
With the rapid development of electronic technology and computer technology, the rate of the data

acquisition module is increasingly high and data transmission capacity requirements are also rising.
The current data collection system is mainly using the PCI-E interface to transmit the collected data
to the computer for data processing and storage in real time. But there are some shortcomings of high
costs, complex operation and poor portability in this way. These problems can be solved with the new
generation of USB3.0 data transfer interface. The theoretical transfer speeds of USB3.0 is up to
5.0Gbit/s, which greatly improves the data transfer bandwidth with inherent advantages of USB1.0,
USB1.1 and USB2.0.It’s very suitable for high speed data acquisition.

Many chip manufacturers have produced chips that support USB3.0 protocol since the protocol
proposed. EZ-USB FX3 (CYUSB3014) produced by the company called cypress is currently the
most widely used chip for USB devices. The chip provides powerful interface design patterns,
including the I/O mode, Slave FIFO mode and GPIF II data transmission mode. Designers can
complete the high-speed data transmission for data acquisition devices by GPIF II mode.

The firmware of the USB3.0 chip is the key of affecting the actual transfer rate of USB3.0
interfaces. In this paper, we introduced the firmware design method of the USB3.0 data transfer
interface and designed the firmware through the use of GPIF II data transmission mode and automatic
DMA data transmission channel to improve the chip resource utilization, thereby increasing the
actual transfer rate.

2. Architecture of the Hardware

The experimental hardware uses the Super-Speed Explorer Kit with EZ-USB FX3. EZ-USB FX3
is Cypress's USB3.0 peripheral controller with high-bandwidth that provides integrated and flexible
features. As is shown in Fig. 1, FX3 integrates the USB 3.0 and USB 2.0 physical layers (PHYs)
along with a 32-bit ARM 926EJ-S microprocessor for powerful data processing and for building
custom USB Super-Speed applications[1].

To provide high-bandwidth access to USB 3.0 data, FX3 contains a hardware unit called General
Programmable Interface, Generation 2 (GPIF II). GPIF II is an enhanced version of the GPIF in

5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 2015)

© 2016. The authors - Published by Atlantis Press 780

FX2LP, Cypress's USB 2.0 product. GPIF II provides easy and glueless connectivity to popular
interfaces such as asynchronous SRAM and asynchronous and synchronous address and data
multiplexed interfaces[2]. FX3 implements a DMA-centric architecture that enables direct
375-MBps data transfer from GPIF II to the USB interface without CPU intervention.

JTAG

ARM 9

SRAM

(512kB/256kB) HS/FS/LS
OTGHost

SS
Peripheral

HS/FS
Peripheral

EZ-Dtect

32
EPs

USB
GPIF II

I2C UART SPI I2S

DMA Interconnect

TD
I

TR
ST

#
TM

S
TC

K
TD

O

OTG_ID
SSRX+
SSRX-
SSTX+
SSTX-
D+
D-

I2
C

_S
C

L

I2
C

_S
D

A
TX RX CT

S
RT

S
SS

N
SC

LK
M

IS
O

M
O

SI
I2

S_
CL

K
I2

S_
SD

I2
S_

W
S

I2
S_

M
CL

K

FSLC[0]
FSLC[1]
FSLC[2]
CLKIN

CLKIN_32
XTALIN

XTALOUT

DQ[31:0]/[15:0]

CTL[15:0]

PMODE[2:0]
INT#

RESET#

Fig. 1 FX3 block diagram

An integrated USB 2.0 USB On-The-Go (OTG) controller enables applications in which FX3 may
serve dual high-speed roles; for example, EZ-USB FX3 may function as a High-Speed On-The-Go
(HS-OTG) host to USB Mass Storage Class (MSC) devices and HID-class devices. FX3 contains 512
KB or 256 KB of on-chip SRAM for code and data. EZ-USB FX3 also provides interfaces to connect
to serial peripherals such as UART, SPI, I2C, and I2S[1-3]. FX3 comes with application development
tools. The software development kit (SDK) provides application examples for accelerating the time to
market.FX3 complies with the USB 3.0 v1.0 specification and is also backward compatible with USB
2.0. It also complies with the Battery Charging Specification v1.1 and USB 2.0 OTG Specification
v2.0.

3. Firmware Design

The firmware is loaded by other devices to the USB controller to achieve the data transfer function
of the interface after the USB controller chip is powered up. EZ-USB FX3 firmware design doesn't
require too much attention to the underlying hardware settings for designers, but simply calls the
appropriate library functions, which reduces the difficulty of the firmware development .As is shown
in Fig. 2,EZ-USB FX3 firmware design is mainly related to the GPIF II interface design and DMA
channels design. Control information, status information, and data information could exchange with
the hardware through the general programmable interface called GPIF II.GPIF II interface allows
super-speed data transfer between the interface chip and FPGA, due to the high frequency of the
GPIF II interface. At the heart of the FX3 is a sophisticated, distributed DMA controller that is
capable of moving data at 800-MBps that allows high performance data transfers between memories
and peripherals without CPU intervention.

Endpoint0

Endpoint1

CPU

DMA Controler

GPIF II
Interface FPGA

Enable Flag

Address

Data

PC

Fig. 2 Block diagram of the firmware design

781

3.1 GPIF II Interface

 EZ-USB FX3 integrates a high-performance interface named GPIF II, which enables
functionality similar to but more advanced than the FX2LP GPIF and Slave FIFO interfaces. GPIF II
is a programmable state machine that provides the flexibility to design a variety of interfaces to
outside entities. The GPIF II interface may function either as a master or a slave in industry-standard
or proprietary interfaces and it enables interface frequencies to 100M Hz. GPIF II can implement
both parallel and serial high-bandwidth interfaces, that the number of bits of the data bus is flexible to
choose between 8 bit, 16 bit and 32 bit. It supports 14 configurable control pins(strobes, enable,
GPIO)when a 32-bit data bus is used and 16 configurable control pins when a 8-bit,16-bit,or 24-bit
data bus is used. All control pins can be input, output or bidirectional.

Peripheral EZ-USB FX3
GPIF II

SLCS
PKTEND
FLAGA
FLAGB
A[1:0]

D[31:0]

SLWR

SLRD

SLOE

PCLK

Fig. 3 Signals of the GPIF II interface

As shown in Fig. 3, the design of the GPIF II interface is configured as a 32-bit synchronous FIFO,
and works in slave mode, with an external clock signal PCLK as a working clock of the state machine.
External devices judge that the FIFO buffer is empty or full by detecting the flag signal FLAGA and
FLAGB. In terms of external devices, the USB3.0 device controller acts like the storage area, which
could freely read from or write to it.

The GPIF II interface is configured by creating a GPIF II state machine, and 8 KB of memory
space is allocated to store the GPIF II state machine definition. Each state is defined by 32 bytes in
(SRAM) memory. These 32 bytes define the properties of a state and the trigger conditions that can
cause state (or I/O) transitions. Each state has two transitions out of it. The transition out of a state is
determined based on transition conditions. Transitions are caused by both external and internal
triggers. Each state is programmed to perform certain actions. The transition conditions are checked
on each GPIF II clock edge or after a programmable number of clock cycles.
3.2 FX3 DAM Subsystem

EZ-USB FX3 device architecture includes a DMA fabric that is used to route data between various
peripheral interfaces and/or the system memory of the device.

CPU

System
Memory

Bridge

Sys tem AHB

D
M

A
 A

H
B

D
M

A
 A

da
pt

er

Pe
rip

he
ra

l C
or

e
Lo

gi
cPeripheral 2 AHB

Peripheral2

DMA Adapter

Peripheral Core
Logic

Peripheral1

Peripheral1 AHB

I/O
 M

at
rix

I/O
 P

ad
s

I/O Matrix

I/O Pads

FX3

Fig. 4 Block diagram of FX3 DMA subsystem

782

The Advanced Microcontroller Bus Architecture - Advanced High Performance Bus (AMBA
AHB) interconnect forms the central nervous system of FX3[3]. Fig. 4 shows how the CPU accesses
the system memory using the System AHB. All peripheral DMA paths connect to the DMA AHB.
Bridges between the System bus and the DMA bus are essential in routing the DMA traffic through
the system memory. The width of a peripheral connection to the AHB determines its throughput. The
peripheral core implements the actual logic of the peripheral (I2C, GPIF, and USB).

The FX3 DMA subsystem runs on an internal DMA bus clock, dma_bus_clk_i, that is divided
down from the CPU clock. DMA descriptors are DMA instructions in a set of registers allocated in
the FX3 RAM. A DMA descriptor holds information about the address and size of the DMA buffer as
well as pointers to the next DMA Descriptor. These pointers create DMA descriptor chains.
Descriptors enable the synchronization between sockets. DMA buffers are data buffers allocated in
the system memory used for DMA. They can be of any size within the memory region and byte
aligned. However, if the ARM data cache is enabled, it requires that the full buffer must be 32-byte
aligned and of a size that is a multiple of 32 bytes. A socket is the unidirectional virtual port (gateway)
used by a peripheral (IP) block to transfer data to/from the system SRAM. An FX3 DMA capable
peripheral has multiple sockets in the DMA adapter. The number of sockets and their properties
depend on the specific DMA adapter to the peripheral. Each peripheral block (IP block) in the device
can support a predefined number of sockets which is the maximum number of independent data flows
that can be done through that IP at a given point of time.

4. Results and Discussion
The firmware test system is shown in Fig. 5.It consists of the excitation source, the USB3.0

controller and the host. The excitation source generates excitation data and then transmits them to the
controller by the GPIF II interface. The controller forwards data to the host according to the USB3.0
protocol. We verified the firmware with the correctness of the design mainly through the firmware
enumeration test and the data transmission test.

PC EZ-USB FX3
(Firmware)

Excitation
Source

USB
Interface

GPIF II
Interface

Fig. 5 The architecture of the firmware test system

We tested the firmware enumeration functions by using the host test software named USB Control
Center. As shown in Fig. 6, various descriptors sent by the firmware have been successfully accepted
by the test software. It indicates that the device controllers comply with the USB3.0 protocol and
could be capable of super-speed data transmission.

Fig. 6 Firmware enumeration test

We tested the actual data transmission speed through the software of Streamer provided by
Cypress. The configuration in Streamer was in accordance with the rules in the firmware, which has

783

been set to the block transfer mode. As shown in Fig. 7, Streamer shows the test speed. It reached 350
Mbyte/s.

Fig. 7 Data transfer rate test

5. Conclusion
In this paper, we described the hardware of the EZ-USB FX3 and the main mechanism of the

firmware. We designed the firmware of the controller to give full play to the characteristics of the
chip by using GPIF II digital transmission mode and establishing an automatic DMA channel,
thereby improving the actual data transfer rate. After a lot of practical application and testing, the
firmware is stable and the speed can be up to 350Mbyte/s. This design has strong practical value and
also has been used in project. Nevertheless, the firmware in this design is still having a big gap
between the theoretical value. It is necessary to do further research on this, so that the USB3.0
interface could have a higher actual transfer rate.

References
[1] Cypress Semiconductor, CYUSB3014, EZ-USB® FX3 Super-Speed USB Controller, Document
Number 001-52136 Rev. *K.

[2] Cypress Semiconductor, AN65974, Designing with the EZ-USB®FX3TM Slave FIFO Interface,
Document No. 001-65974 Rev. *I.

[3] Cypress Semiconductor, AN75705, Getting Started with EZ-USB®FX3TM, Document No.
001-75705 Rev. *C.

[4] Terzopoulos N, Laoudias C, Plessas F, et al. A 5‐Gbps USB3.0 transmitter and receiver linear
equalizer[J]. International Journal of Circuit Theory & Applications, 2015.

[5] Rügamer A, Frank Förster, Manuel Stahl, et al. Features and Applications of the Adaptable
Flexiband USB3.0 Front-end[J]. Navigationssystem, 2014.

[6] Long B Q, Zeng Z M. High Speed Data Transfer System Based on the USB3.0 Technology[J].
Applied Mechanics & Materials, 2014, 614:381-384.

[7] Nigesh B , Kukal T S, Prakriya S. Modeling, design and automation of 5 Gbps serial link
transceiver with jitter cancellation[C]// Communications (NCC), 2013 National Conference on. IEEE,
2013:1 - 5.

[8] Lin M S, Tsai C C, Chang C H, et al. A 5Gb/s low-power PCI express/USB3.0 ready PHY in
40nm CMOS technology with high-jitter immunity[C]// Solid-State Circuits Conference, 2009.
A-SSCC 2009. IEEE Asian. IEEE, 2009:177-180.

784

