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Abstract. Frequent itemset mining is an important technique in data mining. This paper employ the 
sampling method to improve the performance. An in-memory index is presented to store the data 
information, which is maintained by our proposed algorithm FIMS. We conduct the experiments 
over two datasets and find that when the sampling rate is reduced, the mining performance will be 
more efficient. 

Introduction  

Frequent itemset mining is a traditional and important problem in data mining. An itemset is 
frequent if its support is not less than a minimum support specified by users. Traditional frequent 
itemset mining approaches have mainly considered the problem of mining static transaction 
databases. In these methods, transactions are stored in secondary storage so that multiple scans over 
the data can be performed. Three kinds of frequent itemset mining approaches over static databases 
have been proposed: reading-based[4], writing-based[7], and pointer-based[8]. [6] presented a 
comprehensive survey of frequent itemset mining and discussed research directions.  

Frequent Itemsets are huge when the given threshold is low; consequently, the condensed 
representations of frequent item-sets including closed itemsets[10], maximal itemsets[2,9], free 
itemsets[3], approximate k-sets[1], and non-derivable itemsets[5] were proposed.  

The rest of this paper is organized as follows: In Section 2 we present the preliminaries. Section 
3 presents the data structures, and illustrates our algorithm in detail. Section 4 evaluates the 
performance with theoretical analysis and experimental results. Finally, Section 5 concludes this 
paper.  

Table 1 Simple Database 
ID Itemsets 
1 a b c d e  
2 a b c d  
3 b c d  
4 b e 
5 c d e 

Preliminaries  

Given a set of distinct items Γ= {i1,i2,…,in} where |Γ| = n denotes the size of Γ, a subset X ⊆ 
Γ is called an itemset; suppose |X| = k, we call X a k-itemset. A concise expression of itemset X = 
{x1,x2,…,xm} is x1x2…xm. A database D = {T1,T2,…,Tv} is a collection wherein each transaction is 
a subset of Γ, namely an itemset. Each transaction Ti(i =1… v) is related to an id, i.e., the id of Ti 
is i. The absolute support (AS) of an itemset X, also called the weight of X , is the number of 
transactions which cover X, denoted Λ(X)= {|T ||T∈D∧X⊆T }; the relative support (RS) of an 
itemset X is the ratio of AS with respect to |D|, denoted Λr(X)=Λ(X) . Given a relative minimum 
support λ (0 ≤λ≤ 1), itemset X is frequent if Λr(X) ≥λ. Table 1 is a simple database.  

Example 1. Given a simple database D as shown in Table 1 and an absolute support 2, the 
frequent itemsets are {a, b, c, d, e, ab, ac, ad, bc, bd, be, cd, ce, de, abc, abd, acd, bcd, cde, abcd}.  
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FIMS Algorithm 

FIMS tree To quickly match the itemset and perform incremental mining, we design an 
in-memory index named FIMST. In the FIMST, each node nX denotes an itemset X. nX is a 2-tuple 
< item, sup >, in which item denotes the last item of the current itemset X, and it is sorted by the 
support order under the same parent; sup is the support of X. In our data structure, we can see that if 
node nX is the parent of node nY , then itemset Y is the superset of itemset X; also, all the nodes 
denote the frequent itemsets, and the infrequent nodes are deleted. We show the FIMST of the 
database in Table 1 in Figure 1.  

 
Fig. 1 FIMS tree for λ =3 

 
Sampling the Databases To improve the performance, we take sample from the database. A 

basic idea is to use a sampling rate to obtain the samples with a normal distribution. Thus, we can 
run the mining algorithm with a higher speed. Note when we take the samples, different sampling 
rate may result in a various accuracy, which will be evaluated in our experiments.  

Algorithm Description We propose a breath-first algorithm to perform the mining. Algorithm 1 
shows the details. As can be seen, we first generate a root node, then we create the children nodes of 
the root, which represent the distinct items. Furthermore, we generate X∪Y for itemset X with its 
sibling itemset Y, and we compute the support, if the support is larger than the minimum support, 
we will generate a child node nX∪Y for nX . After all the children nodes are generated, we will 
recursively call the FIMS algorithm for the children nodes.  

Experiments  

We conducted the experiments to evaluate the performance of FIMS. Since the sampling rate 
may impact the accuracy of the mining results, then we will use it as the major element to conduct 
the evaluation.  
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Fig. 2 Runtime Cost for minsup = 0.01     Fig. 3 Runtime Cost for minsup = 0.9 
Running Environment and Datasets All the algorithms were implemented with Python, com-

piled with Wingide running on Microsoft Windows 7 and performed on a PC with a 3.60GHZ Intel 
Core i7-4790M processor and 12GB main memory.  

Table 2 Dataset Characteristics 
DataSet  Trans Count  Average Size  Min Size  Max Size  Items Count  Trans Correlation 

Retail  88 162  10  1  76  16470  1598 
Connect4  67 557  43  43  43  129  3 

We employed 2 real-world datasets to generate the samples. The retail dataset contained the sale 
transactions from a super market, and the Connect4 dataset contained all legal 8-ply positions in the 
game of Connect Four in which neither player has won yet, and in which the next move is not 
forced. The detailed data characteristics are shown in Table 2.  

       

Fig. 4 Memory Cost for minsup = 0.01     Fig. 5 Memory Cost for minsup = 0.9 
We set a fixed minimum support, and evaluated the FIMS algorithm over different sampling rate. 

As can be seen from Figure 2 and Figure 3, when we decreased the sampling rate, that is, from 0.9 
to 0.01, the mining efficiency increased significantly over both datasets. Comparing the runtime 
over the two datasets, we can see that sampling method was more efficient when running over the 
dense dataset Connect. Furthermore, we can see from Figure 4 and Figure 5, the memory cost was 
almost unchanged when we alter the sampling rate. It is reasonable since the index we need to 
maintain in the memory are almost the same. On the other hand, we compared the accuracy of 
FIMS algorithm over different sampling rate. As can be seen from Table 3, the precision and recall 
decreased when we reduce the sampling rate. As a result, we can find that the performance is 
inversely proportional to the accuracy.  

Conclusions 

In this paper we studied the algorithm for mining frequent itemsets over a database with 
sampling method. An effective in-memory data structure, the FIMST, was used to record all the 
frequent itemsets. We proposed an algorithm FIMS to maintain the data synopsis in FIMST. In the 
algorithm, we use the sampling method to increase the speed of computing the support. Our 
experiments showed that our sampling method can significantly improve the performance with a 
relatively high accuracy.  
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Table 2 Precision and Recall over Datasets 
 Retail Connect4 

Sampling 
Rate 

Precision(%) Recall(%) Precision(%) Recall(%) 

0.9 99.38  98.76 99.78 99.03 
0.8 98.75  98.14 99.44 99.35 
0.7 98.75 97.53 99.9 96.85 
0.6 99.38 98.15 99.5 98.89 
0.5 98.12 99.37 95.99 99.59 
0.4 98.12 96.91 96.25 99.04 
0.3 96.88 96.27 96.09 98.77 
0.2 96.25 96.86 97.18 97.33 
0.1 93.12 93.71 97.8 94.41 
0.09 95.62 89.47 95.25 94.06 
0.08 93.75 93.17 96.14 94.84 
0.07 94.38 88.3 94.13 92.9 
0.06 97.5 88.64 99.23 86.35 
0.05 90.62 94.16 91.62 97.74 
0.04 92.5 87.57 89.09 97.83 

    0.03 90.62 81.01 82.73 96.57 
    0.02 83.75 77.01 94.99 75.2 

0.01 84.38 66.18 90.7 71.44 
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