
Frequent Itemset Mining Algorithm based on Sampling Method
Haifeng Li1,a, Ning Zhang1, Yuejin Zhang1

1School of Information Central University of Finance and Economics Beijing, China 100081
amydlhf@cufe.edu.cn

Keywords: Frequent Itemset, Sampling, Data Mining.

Abstract. Frequent itemset mining is an important technique in data mining. This paper employ the
sampling method to improve the performance. An in-memory index is presented to store the data
information, which is maintained by our proposed algorithm FIMS. We conduct the experiments
over two datasets and find that when the sampling rate is reduced, the mining performance will be
more efficient.

Introduction

Frequent itemset mining is a traditional and important problem in data mining. An itemset is
frequent if its support is not less than a minimum support specified by users. Traditional frequent
itemset mining approaches have mainly considered the problem of mining static transaction
databases. In these methods, transactions are stored in secondary storage so that multiple scans over
the data can be performed. Three kinds of frequent itemset mining approaches over static databases
have been proposed: reading-based[4], writing-based[7], and pointer-based[8]. [6] presented a
comprehensive survey of frequent itemset mining and discussed research directions.

Frequent Itemsets are huge when the given threshold is low; consequently, the condensed
representations of frequent item-sets including closed itemsets[10], maximal itemsets[2,9], free
itemsets[3], approximate k-sets[1], and non-derivable itemsets[5] were proposed.

The rest of this paper is organized as follows: In Section 2 we present the preliminaries. Section
3 presents the data structures, and illustrates our algorithm in detail. Section 4 evaluates the
performance with theoretical analysis and experimental results. Finally, Section 5 concludes this
paper.

Table 1 Simple Database
ID Itemsets
1 a b c d e
2 a b c d
3 b c d
4 b e
5 c d e

Preliminaries

Given a set of distinct items Γ= {i1,i2,…,in} where |Γ| = n denotes the size of Γ, a subset X ⊆
Γ is called an itemset; suppose |X| = k, we call X a k-itemset. A concise expression of itemset X =
{x1,x2,…,xm} is x1x2…xm. A database D = {T1,T2,…,Tv} is a collection wherein each transaction is
a subset of Γ, namely an itemset. Each transaction Ti(i =1… v) is related to an id, i.e., the id of Ti
is i. The absolute support (AS) of an itemset X, also called the weight of X , is the number of
transactions which cover X, denoted Λ(X)= {|T ||T∈D∧X⊆T }; the relative support (RS) of an
itemset X is the ratio of AS with respect to |D|, denoted Λr(X)=Λ(X) . Given a relative minimum
support λ (0 ≤λ≤ 1), itemset X is frequent if Λr(X) ≥λ. Table 1 is a simple database.

Example 1. Given a simple database D as shown in Table 1 and an absolute support 2, the
frequent itemsets are {a, b, c, d, e, ab, ac, ad, bc, bd, be, cd, ce, de, abc, abd, acd, bcd, cde, abcd}.

5th International Conference on Computer Sciences and Automation Engineering (ICCSAE 2015)

© 2016. The authors - Published by Atlantis Press 852

FIMS Algorithm

FIMS tree To quickly match the itemset and perform incremental mining, we design an
in-memory index named FIMST. In the FIMST, each node nX denotes an itemset X. nX is a 2-tuple
< item, sup >, in which item denotes the last item of the current itemset X, and it is sorted by the
support order under the same parent; sup is the support of X. In our data structure, we can see that if
node nX is the parent of node nY , then itemset Y is the superset of itemset X; also, all the nodes
denote the frequent itemsets, and the infrequent nodes are deleted. We show the FIMST of the
database in Table 1 in Figure 1.

Fig. 1 FIMS tree for λ =3

Sampling the Databases To improve the performance, we take sample from the database. A

basic idea is to use a sampling rate to obtain the samples with a normal distribution. Thus, we can
run the mining algorithm with a higher speed. Note when we take the samples, different sampling
rate may result in a various accuracy, which will be evaluated in our experiments.

Algorithm Description We propose a breath-first algorithm to perform the mining. Algorithm 1
shows the details. As can be seen, we first generate a root node, then we create the children nodes of
the root, which represent the distinct items. Furthermore, we generate X∪Y for itemset X with its
sibling itemset Y, and we compute the support, if the support is larger than the minimum support,
we will generate a child node nX∪Y for nX . After all the children nodes are generated, we will
recursively call the FIMS algorithm for the children nodes.

Experiments

We conducted the experiments to evaluate the performance of FIMS. Since the sampling rate
may impact the accuracy of the mining results, then we will use it as the major element to conduct
the evaluation.

853

Fig. 2 Runtime Cost for minsup = 0.01 Fig. 3 Runtime Cost for minsup = 0.9
Running Environment and Datasets All the algorithms were implemented with Python, com-

piled with Wingide running on Microsoft Windows 7 and performed on a PC with a 3.60GHZ Intel
Core i7-4790M processor and 12GB main memory.

Table 2 Dataset Characteristics
DataSet Trans Count Average Size Min Size Max Size Items Count Trans Correlation

Retail 88 162 10 1 76 16470 1598
Connect4 67 557 43 43 43 129 3

We employed 2 real-world datasets to generate the samples. The retail dataset contained the sale
transactions from a super market, and the Connect4 dataset contained all legal 8-ply positions in the
game of Connect Four in which neither player has won yet, and in which the next move is not
forced. The detailed data characteristics are shown in Table 2.

Fig. 4 Memory Cost for minsup = 0.01 Fig. 5 Memory Cost for minsup = 0.9
We set a fixed minimum support, and evaluated the FIMS algorithm over different sampling rate.

As can be seen from Figure 2 and Figure 3, when we decreased the sampling rate, that is, from 0.9
to 0.01, the mining efficiency increased significantly over both datasets. Comparing the runtime
over the two datasets, we can see that sampling method was more efficient when running over the
dense dataset Connect. Furthermore, we can see from Figure 4 and Figure 5, the memory cost was
almost unchanged when we alter the sampling rate. It is reasonable since the index we need to
maintain in the memory are almost the same. On the other hand, we compared the accuracy of
FIMS algorithm over different sampling rate. As can be seen from Table 3, the precision and recall
decreased when we reduce the sampling rate. As a result, we can find that the performance is
inversely proportional to the accuracy.

Conclusions

In this paper we studied the algorithm for mining frequent itemsets over a database with
sampling method. An effective in-memory data structure, the FIMST, was used to record all the
frequent itemsets. We proposed an algorithm FIMS to maintain the data synopsis in FIMST. In the
algorithm, we use the sampling method to increase the speed of computing the support. Our
experiments showed that our sampling method can significantly improve the performance with a
relatively high accuracy.

854

Table 2 Precision and Recall over Datasets
 Retail Connect4

Sampling
Rate

Precision(%) Recall(%) Precision(%) Recall(%)

0.9 99.38 98.76 99.78 99.03
0.8 98.75 98.14 99.44 99.35
0.7 98.75 97.53 99.9 96.85
0.6 99.38 98.15 99.5 98.89
0.5 98.12 99.37 95.99 99.59
0.4 98.12 96.91 96.25 99.04
0.3 96.88 96.27 96.09 98.77
0.2 96.25 96.86 97.18 97.33
0.1 93.12 93.71 97.8 94.41
0.09 95.62 89.47 95.25 94.06
0.08 93.75 93.17 96.14 94.84
0.07 94.38 88.3 94.13 92.9
0.06 97.5 88.64 99.23 86.35
0.05 90.62 94.16 91.62 97.74
0.04 92.5 87.57 89.09 97.83

 0.03 90.62 81.01 82.73 96.57
 0.02 83.75 77.01 94.99 75.2

0.01 84.38 66.18 90.7 71.44

Acknowledgement

This research is supported by the National Natural Science Foundation of China (61100112,
61309030), Beijing Higher Education Young Elite Teacher Project (YETP0987),). Key project of
National Social Science Foundation of China(13AXW010), 121 of CUFE Talent project Young
doctor Development Fund in 2014 (QBJ1427).

References

[1] F.Afrati, A.Gionis, and H.Mannila, Approximating a Collection of Frequent Sets, in Proc.
SIGKDD’2004
[2] G.Yang. The Complexity of Mining Maximal Frequent Itemsets and Maximal Frequent Patterns.
in Proc. SIGKDD’2004.
[3] J.Boulicaut, A.Bykowski, and C.Rigotti, Free-sets: a condensed representation of boolean data
for the approximation of frequency queries, Data Mining and Knowledge Discovery, 7 (2003) 5-22
[4] R.Agrawal, and R.Srikant, Fast algorithms for mining association rules, in: Proc. VLDB’1994.
[5] T.Calders, and B.Goethals, Mining All Non-Derivable Frequent Itemsets, in: Proc. PKDD’2002
[6] J.Han, H.Cheng, D.Xin, and X.Yan, Frequent pattern mining: current status and future
directions, Data Mining and Knowledge Discovery, 17 (2007) 55-86
[7] J.Han, and J.Pei, Mining frequent patterns by pattern-growth: methodology and implications, in:
Proc. SIGKDD’2000
[8] S.Kevin, and R.Ramakrishnan, Bottom-Up Computation of Sparse and Iceberg CUBEs, in: Proc.
SIGMOD’1999.
[9] G.Mao, X.Wu, X.Zhu, and G.Chen, Mining Maximal Frequent Itemsets from Data Streams,
Journal of Information Science 33 (3) (2007) 251-262
[10] N.Pasquier, Y.Bastide, R.Taouil, and L.Lakhal, Discovering frequent closed itemsets for
association rules, in: Proc. ICDT’1999

855

