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Abstract. In this paper, we focus on investigating effective approach for tackling the complex hybrid 
indices optimization problems (HIOPs). Firstly, we analyze the strategy that utilizes machine learning 
models for breaking restrictions on search ability of MOEAs employed in conventional optimization 
framework based on interactive evolutionary computation (IEC). Then we take a plant layout design 
problem as a typical instance of HIOPs to devise an effective mechanism for employing BP network 
to forecast tacit fitnesses of design solutions. Furthermore, we develop an interactive multiobjective 
metaheuristic algorithm (IMMA) integrating a BP neural network for HIOPs. We also develop a 
prototype system based on IMMA for plant layout design optimization and experimental results have 
verified effectiveness of the proposed IMMA.  

Introduction 
In practice, due to the increasing complexity in socioeconomic environments, many operational 
optimization problems not only include explicit objectives that can be quantified also include other 
tacit objectives that  cannot be directly quantified, such as the decision maker’s satisfaction in product 
designing problems [1-5], which have been recognized as instances of hybrid indices optimization 
problems (HIOPs) [6, 7]. According to [6, 8, 9], the complex HIOPs normally have the following 
main particular characteristics: problem domain is large; some objectives cannot be formulized as 
explicit functions; fitnesses of solutions that given by decision makers are noisy due to human fatigue; 
problem solving process needs to adopt man-machine interaction.  

To tackle HIOPs, appropriate approaches should have functionalities in: providing man-machine 
interfaces; alleviating effect of noisy tacit fitnesses; controlling population diversity to maintain 
optimization algorithms’ searching abilities. Because the methodology of Interactive Evolutionary 
computation (IEC) intrinsically incorporates human as one of its inputs and can attain search 
heuristics inherited from effective evolutionary algorithms [10], IEC-based approaches have been the 
mostly employed approach for accommodating HIOPs. Such as those methods developed in [8, 11] 
for single-tacit-objective optimization, and the interactive multiobjective optimization methods 
proposed in [4, 5, 12] by integrating conventional multi-objective evolutionary algorithms. However, 
when applying these methods to tackle complex HIOPs, the population size is normally restricted to 
no more than 20 [6, 10] due to decision makers’ fatigue, which consequently imposes restrictions on 
search ability of traditional multiobjective heuristic optimization algorithms employed in IEC-based 
optimization framework.  

Therefore, in order to improve optimization efficiency of interactive decision making approaches 
for processing HIOPs, in this paper, inspired by the effective bat algorithm (BA) [13] and NNIA [14] 
we propose an interactive multiobjective metaheuristic algorithm (IMMA). To break through the 
restrictions by limited population size on search ability of IMMA, we employ a typical BP neural 
network to learn from tacit fitnesses and then to forecast tacit fitnesses of individuals in population 
when decision makers are in fatigue. Finally, a prototype experimental system is developed to verify 
effectiveness of the proposed IMMA.  

 

4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015)

© 2016. The authors - Published by Atlantis Press 685



 

Formulation of HIOPs and the Plant Layout Design Problem 

Formulation of HIOPs. According to reference [6, 7], the hybrid indices optimization problem 
(HIOP) can be formulized as the following Definition 1. 

Definition 1: The HIOP can be symbolically denoted as following six tuple〈N, X, f, L,Y, P〉, and 

(1) N denotes the numbers of decision makers, generally |N|>=2, and |N|=1 for single decision 
maker.  

(2) X denotes the set of solutions in the specific problem domain, x = (x1, x 2, … , x n) denotes a 
feasible solution, and xi denotes the value of i-th dimension, n denotes the dimension number in x. 

(3) f = ( f1, f2, … fp, fp+1 ) denotes all the decision objectives. f1, f2, … fp denotes all the objectives 
which can be quantitatively modeling, such as the currency cost, time costs, etc. fp +1 denotes the 
objectives which cannot be quantitatively formulized and only can be judged by decision makers 
themselves qualitatively, such as the designers’ expert satisfaction, customers’ satisfaction, etc.  

(4) 1 2( ) ( ( ), ( ), , ( )) 0mL x L x L x L x= ≤K denotes constraints.  

(5) Y denotes the image set of X under the mapping of function f, that is Y={ | , ( )y x X f x y∃ ∈ = }. 
(6) P denotes the satisfaction standards of decision makers.  

HIOPs are intrinsically a kind of multiobjective optimization problems having qualitative fitness 
with noise given by decision makers. The major difference of problem solving process between HIOP 
and traditional multiobjective optimization problems lies in the incorporation of human interaction 
throughout the whole optimization process.  

Length

 
Fig. 1. Plant Layout Design Problem 

 

Table 1 Plant layout design parameters 

Room Parameter  Label Area 
Stores area Width X0 A1 = X0(2.2-X1) 
Press area Length X1 A2 = 2X1X2 
Press area Width X2  
Paint room Width X3 A3 = X3X4 
Paint room Length X4  
Offices Length X5 A4 = 2×[3.6 – (X0+X6)] ×X5 
Warehouse Width X6 A5 = X6X7 
Warehouse Length X7  
Spares area - - A6 = X1×[3.6 – (X2+X3)] 
Assembly area - - A7 = [3.6 – (X0+X6)] ×[2.2 – (X1+X5)] + X6 ×[2.2 – (X1+X7)] 
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Plant Layout Design Problem. This special type of optimum design problem, as shown in Fig.1,  
is a typical instance of HIOPs [5]. According to reference [5], obviously, plant layout design problem 
normally have to consider both tacit and explicit objectives: (1) the cost of building is minimized, and 
(2) the subjective expert satisfaction that concentrates on the efficiency of the plant is maximized.  

Therefore, in this paper, we take the plant layout design problem as the illustrative example under 
discussion. According to reference [5], in designing the most appropriate solution, there are eight 
parameters are required to represent different solutions. All eight parameters and their relations are 
listed in Table 1.  

Note that the cost of each facility is proportional to its area, except the press area and the 
warehouse area, whose cost is doubled. All facilities except the assembly area should be rectangular. 
The lengths of the press area, paint room and spares area are kept the same. Overall size of the plant is 
constant. As a result, according to Table 1, the function of the cost of building to be minimized can be 
formulated as  

7
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On the other hand, the assessments on individual design solution will be given as preferences by 
decision makers through interaction with multiobjective optimization algorithm.  
 

 

 
Fig.2. Strategy for breaking restrictions on search ability of MOEAs by using machine learning 

models 

BP Network and its Application to Forecast Tacit Interval-valued Fitness 

Strategy for breaking restrictions on search ability of multiobjective heuristic algorithms. In 
conventional multiobjective heuristic algorithms, such as MOEAs, normally the size of their 
populations are set larger than 30, sometimes more than 100. However, due to the user fatigue 
phenomenon in IEC based decision making framework, the population size of its employed 
multiobjective heuristic algorithms are restricted down to small than 20 individuals. Consequently, 
the search ability of conventional algorithms is reduced to a great extent.   

In this subsection, inspired by reference [15], we here employ BP neural network to deduce 
effective strategy for breaking restrictions on search ability of multiobjective heuristic algorithms. 
During interaction with optimization algorithms, decision makers normally will get into the stage of 
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fatigue, and then their preferences will be biased by fatigue noise. Obviously, all the tacit fitnesses 
presented by decision maker into algorithms should be treated as information that reflects decision 
maker’ preferences or judgment on design solutions. Further, these tacit fitnesses can surely be 
utilized as input data to train machine learning models, such as BP neural network [16], so as to work 
as forecasting models to evaluate alternative design solutions when decision makers are in fatigue. In 
sum, the effective strategy for breaking restrictions on search ability of multiobjective heuristic 
algorithms is demonstrated in Fig. 2.  

In Fig. 2, after obtaining trained machine learning models, we integrate these models into the 
IEC-based interactive decision making framework to provide forecasted tacit fitnesses fforcasted. As 
such, employed heuristic algorithms can maintain its original search ability through running with 
regular population size.  

Basic Processing Steps of BP Neural Network [16]. The training steps of BP neural network can be 
summarized as follows: 

Step 1: Initialization. Based on the input data serials (X,Y), determine the number (n) of nodes in 
input layer, the number (l) in hidden layer, and the number (m) in output layer; initialize the weights 

ijω  that connects input layer and the hidden layer, and the weights jkω  that connects the hidden layer 
and the output layer; initialize the threshold a on hidden layer and the threshold b on output layer. 
Generate learning rate η  randomly, and choose an appropriate activation function.  

Step 2: Calculate the outputs of hidden layer. Based on the input vector X, the weighting vector ijω  
and the threshold a, obtain outputs from hidden layer according to  

1
, 1,2,..., ,

n

j ij i j
i

H f x a j lω
=

 = + = 
 
∑                                                                                                                    (2) 

where l denotes the number of nodes in hidden layer, f denotes the activation function adopted as 
following  

( ) 1 .
1 xf x

e−=
+

                                                                                                                                (3) 

Step 3: Calculate the results of output layer. Based on the outputs H from hidden layer, the 
weighting vector jkω , and the threshold b, compute the forecasting results O, where   

1
, 1,2,..., .

t

k j jk k
j

O H b k mω
=

= + =∑                                                                                                         (4) 

Step 4: Calculate the output error. Based on the forecasting results O and the expectation output Y, 
derive the error e  of forecasting according to  

, 1,2,..., .k k ke Y O k m= − =                                                                                                                (5) 
Step 5: Update the weighing vector jkω  and the weighting vector ijω . Based on the error e  of 

forecasting, we can update the ijω  and jkω  by use of following equations: 

( )
1

1 ,   1,2,..., ;   1,2,..., ;   1, 2,..., ;
m

ij ij j j jk k
k

H H e i n j l k mω ω η ω
=

= + − = = =∑                                           (6) 

,   1,2,..., ;   1,2,..., ;jk jk j kH e j l k mω ω η= + = =                                                                                      (7) 
Here, η  denotes the learning rate. 

Step 6: Update the threshold. By use of the error e  of forecasting, we also can update the 
thresholds a and b according to  
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,   1,2,..., ;   1,2,..., ;k k kb b e j l k mη= + = =                                                                                        (9) 

Step 7: Check termination condition. If satisfied, then return; else go to Step 2. 

 

 
Fig. 3. Plant layout design solution with interval-valued tacit fitness 

 

Table 2 Mapping Relations between Interval-Valued Assessments and Outputs States in Employed 
BP Neural Network 

Linguistic terms Label Interval-valued 
Assessment 

Scores Mapped Output Sates in Applying BP Neural 
Network 

Worst 0 [0, 0] 0 1 0 0 0 0 0 0 0 0 
↑↓  [0, 1] 0.5 0 1 0 0 0 0 0 0 0 

Almost Medium 1 [1, 1] 1 0 0 1 0 0 0 0 0 0 

↑↓  [1, 2] 1.5 0 0 0 1 0 0 0 0 0 

Medium 2 [2, 2] 2 0 0 0 0 1 0 0 0 0 

↑↓  [2, 3] 2.5 0 0 0 0 0 1 0 0 0 

Better 3 [3, 3] 3 0 0 0 0 0 0 1 0 0 

↑↓  [3, 4] 3.5 0 0 0 0 0 0 0 1  

Best 4 [4, 4] 4 0 0 0 0 0 0 0 0 1 

Application of BP Neural Network to forecast interval-valued tacit fitness of Plant Layout 
Design Solution. When confronted with assessing on the alternative plant layout design solutions, 
decision makers are often only willing to denote their preferences with interval values rather than 
crisp numbers. Therefore, in this paper, we employ linguistic terms to allow decision makers to 
express their assessments. The user interface for evaluating individual plant layout solution is devised 
as shown in Fig.3.  
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As can be seen from Fig. 3, 5-scale linguistic term set, i.e. {worst (0), almost medium (1), medium 
(2), better (3), best (4)}, is hired as labels for decision makers to express their preferences on each 
solution. Then the labels for chosen upper bound and lower bound are collected as an interval values, 
for example, firstly we collect interval value [0, 1] to represent [worst, almost medium], we next 
assign the medium value of [0, 1] as the final score for the evaluated solution, which is shown in Table 
2 for clarity. Obviously, there are nine possible score degrees for a certain solution. In order to apply 
BP neural network to learn from those evaluations associated with corresponding design solutions, in 
table 2, we also devise a scheme to map the total nine possible score degrees to nine output states for 
BP neural network.  

Interactive Multiobjective Metaheuristic Algorithm Integrating BP Neural Network 
Recently, swarm intelligence has been studied in depth and a serial of metaheuristic inspired by 
swarm intelligence have been proposed [17], among which bat algorithm [18] as a promising 
methodology have been successfully applied to different areas [19]. Till now, according to the 
literature survey carried out in reference [18], there is still less attention on metaheuristic approaches 
based on bat algorithms for multiobjective optimization, much less interactive multiobjective 
metaheuristic algorithms for HIOPs. Therefore, in this section, inspired by bat algorithm and the 
effective multiobjective evolutionary algorithm NNIA [14], we propose an interactive multiobjective 
metaheuristic algorithm (IMMA), in which the above-discussed BP neural network is integrated to 
substitute decision makers to forecast tacit fitnesses of design solutions when they are in fatigue. The 
proposed IMMA is detailed as following Algorithm I.  

Algorithm I. Interactive Multiobjective Metaheuristic Algorithm Integrating a BP Neural 
Network 
Step 1: Configuration. Let POP denote the active population with POP_size individuals, 
ArchivedPOP denote the population containing all nondominated solutions found so far, and the 
AssessedPOP denote the database storing all individuals and their scores evaluated by decision 
makers.  

Step 2: Initialization. Randomly generate POP_size individuals and store them in POP. Based on the 
interface as shown in Fig. 3, all individuals in POP are displayed to decision makers for obtaining 
their tacit fitnesses, then their explicit fitnesses are also calculated according to Eq.(1). Further, based 
on the tacit and explicit fitnesses, we can derive nondominated solutions and feed them into 
ArchivedPOP. Collect all evaluated solutions and their tacit fitnesses into AssessedPOP.  

Step 3: Carry out with equal possibilities the following disturbing operations in Eq. (10) and Eq. (11) 
on POP.  

( )new oldx mutate x= .                                                                                                                      (10) 
Here ( )mutate ⋅  denotes the bit mutation operator in reference  [14]. 

t
new oldx x Aε= + .                                                                                                                           (11) 

Here ε  is drawn from [-1, 1]. tA  abides by the strategy 1t tA Aα −=  employed in bat algorithm where 
α  is a constant and normally is set to 0.9 [18].  

Step 4: Randomly chose half POP to execute following flying operation:  

min max min( )if f f f β= + − ,                                                                                                                           (12) 

1 * 1( )t t t
i i i ix x x x f− −= + − .                                                                                                                           (13) 
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Here, min 0f = , max 1f = , β  is a random vector in [0, 1] which is drawn from a uniform distribution. 
*x  is randomly selected from nondominated solutions in ArchivedPOP and holds best tacit fitness.  

Step 5: If the size of AssessedPOP meet the minimum number required, then use AssessedPOP to 
train employed BP neural network. Check the fatigue signal controlled by decision maker and the 
readiness of trained BP neural network. If fatigue signal is not on or BP neural network does not meet 
the minimum success rate, proceed to Step 6; otherwise go to Step 7.  

Step 6: Display all solutions in current POP to decision makers and collect their tacit fitnesses. Store 
all evaluated solutions and their tacit fitnesses into AssessedPOP.  

Step 7: If fatigue signal is on, recall Eq. (12) and Eq. (13) to generate another (ζ -1)* POP_size 
solutions, where ζ  is the expansion rate. Then, utilize trained BP neural network to forecast the 
fitnesses of all solutions in current POP.  

Step 8: Update ArchivedPOP through nondomination operations on combination of current POP and 
ArchivedPOP. Update POP by crowding-distance operations [14] on ArchivedPOP.  

Step 9: Check stop criteria, if met then stop else then go to Step 3.  

Experiment 
In this section, we use Matlab® and Java® to implement prototype experimental system, as shown in 
Fig. 4, to verify effectiveness of Algorithm I. In our prototype system, POP_size is set to 9, minimum 
size of AssessedPOP is set to 20, expansion rate ζ  is set to 4, and the minimum forecasting success 
rate of employed BP neural network is set to 90%. Experiments are conducted under two scenarios: 
IMMA with or without support of BP neural network. The maximum generation number at which the 
prototype system stops is set to 20. Four students from related majors are organized to carry out 
experiments independently. Results are collected in Table 3 for comparison. 

 

 
Fig. 4. Prototype experimental system for plant layout design optimization 
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Table 3 Comparative results of IMMA with or without support of BP neural network 

Algorithms items 1 2 3 4 Avg Srate 

IMMA without BP nerual 
network 

Tstop 21 21 21 17 20 
25% 

Neval 189 189 189 153 180 

IMMA 
Tstop 12/15 15/18 17/21 11/15 13.75/17.25 

75% 
Neval 108 135 153 99 123.75 

 
In Table 3, Tstop denotes the generation number at which system exists or decision maker terminate 

the system. Neval denotes the total number of solutions that decision maker have evaluated before Tstop. 
As for the scenario of IMMA without support of BP network, all students are asked to evaluate all 
solutions throughout the whole optimization process. Only one student got satisfied and stopped the 
system at the 17th generation, the success rate Srate is rather low in comparison with results from the 
scenario of IMMA with support of BP network. According to the data under indicator Tstop, students 
unanimously got into fatigue after 10th generation, but the variance of Tstop is relatively large. The 
main reason for this phenomenon is that readiness condition (the minimum forecasting success rate of 
employed BP neural network is set to 90%) prohibited activating employed BP neural network to 
forecast tacit fitnesses even though users were already in fatigue. Overall, as can be seen, IMMA is 
effective both in design optimization and in alleviating user’s fatigue.  

Conclusions 
To effectively tackle HIOPs, we have proposed an interactive multiobjective metaheuristic algorithm 
(IMMA) and carried out investigation on the typical HIOP: plant layout design optimization. Aiming 
at alleviating user fatigue during evaluation, we have employed a BP neural network to forecast tacit 
fitnesses of design solutions. Furthermore, we also have developed a prototype experimental system 
based on IMMA for plant layout design optimization, and the results show that the proposed IMMA is 
effective. One of next research directions, one can incorporate combined forecasting machine models 
to improve the training efficiency in IMMA, such as the grey forecasting models working with small 
training datasets. 
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