
 A Modified Method of Ant Colony

Optimization for Web Service

Sheng Guojun*

Department of Information Management
Dalian Neusoft Information Institute

Dalian, China

shengguojun@neusoft.edu.cn

* Corresponding Author

Lu Yanxia

Department of Information Management
Dalian Neusoft Information Institute

Dalian, China

luyanxia@neusoft.edu.cn

Wang Jingshu

Department of Information Management

Dalian Neusoft Information Institute
Dalian, China

wangjingshu@neusoft.edu.cn

Zhou Dongzhao

Department of Information Management

Dalian Neusoft Information Institute
Dalian, China

zhoudongzhao@neusoft.edu.cn

Abstract—Web service composition optimization is a typical

NP-hard problem to which the Ant Colony Optimization

algorithm is applied appropriately for its excellent

distributed computing capability and strong robustness. In

this paper, we propose a new modified ant colony

optimization algorithm called MACS and try to apply it in

the problem of Web service composition optimization. The

MACS algorithm employs both a non-linear dynamic
parameter of the pseudorandom proportion selection rule

and a random-weighted route selection method to control

the behavior of the ant colony. Besides, the algorithm uses a

five-dimensional quality vector and the fitness function to

evaluate the ant solutions. Each ant updates the pheromone

according to the quality of the solution it built, the

pheromone variation range is limited in a max-min interval,

so the evolution ability of the ant colony can be evidently
improved with these measures. In the final experimental

part, a novel algorithm performance evaluation method

called APEI is presented. These concepts and methods

provide a new thinking for application researches of WSC

problem. Experimental results show that the MACS

algorithm can achieve better performance than traditional

ACO algorithms in WSC optimization. Some useful

conclusions are obtained through the analysis and
explanation of the experimental data, which lay a solid

foundation for further researches.

Keywords-Web service composition; quality of service;

modified ant colony optimization; dynamic pseudorandom

proportion selection paramete; algorithm performance

evaluation index

I. INTRODUCTION

Web services[1] are software systems identified by
URIs which can support interoperable machine-to-
machine interaction over a network. Other systems
interact with the Web service using XML based standards
(e.g., SOAP, WSDL, and UDDI) and Internet protocols.
Web service has become the core technology of new
generation distributed processing systems. The function of
a single Web service is very limited, WSC(Web Service
Composition) can combine simple services into more

complex new services so as to meet the demands of users.
It can also make the system more adaptive in dynamic
network environment. As a promising software reuse
mechanism, WSC is given more and more attention by
both the business and the academic communities, many
researches on WSC have come forth continuously in
recent years. In particular, the creation of value-added
services by composition of existing ones is gaining a
significant momentum[2]. Nowadays, the business
environment among enterprises becomes more complex
and changing, for each workflow activity there may exist
many alternative Web services that provide overlapping or
identical functionality but with different Quality of
Service (QoS), thus a selection and composition method
should be made to determine which services are to
participate in a composite service, this is a typical NP-hard
problem. It has become a key problem in WSC
optimization field about how to select suitable ones from
massive composition schemes, which possesses important
theoretical significance and practical value. The rest of
this paper is organized as follows. Section 2 gives a brief
introduction to the related works. Section 3 describes the
Web service composition problem. Section 4 gives a
concrete exposition on the MACS algorithm. Section 5
presents the experiment results of the MACS and its
related algorithms. Section 6 concludes this paper.

II. RELATED WORKS

Many methods were proposed to solve the Web
service selection problem. Shangguang Wang et al.[3]
proposed a fast service selection method by using fuzzy
logic to control the service selection process and used the
mixed integer programming to assist users in obtaining
suitable services. R. Dinesh Kumar et al. [4] proposed a
web service selection model using Analytic Hierarchy
Process which was used to select the best web service
based on QoS Constraints. Xiaoqin FAN et al.[5] designed
a reliable service selection algorithm based on an
improved Markov decision process (IMDP) for reliable
service composition, and proposed an effective method to

International Conference on Education, Management, Computer and Society (EMCS 2016)

© 2016. The authors - Published by Atlantis Press 1292

http://dict.cnki.net/dict_result.aspx?searchword=%e8%af%84%e4%bb%b7&tjType=sentence&style=&t=evaluation
javascript:showjdsw('showjd_0','j_0')

convert the service composition of IMDP into solving
a non-homogeneous linear equation set. Yanping Chen et
al. [6] proposed a new algorithm, called Mixed
Intelligent Optimization Algorithm (MIOA) to optimize
service selection with multiple QoS constraints by
using both Maximum Entropy Method and Social
Cognitive Optimization theory. Ludwig,S.A[7] proposed
a meta-heuristic method based on Particle Swarm
Optimization to address the Web service composition
optimization problem, in which several workflow
requests could be processed simultaneously. In [8], a
novel QoS-based service composition technique was
proposed to work out a multi-objective optimization
problem. A dynamic Web service composition and
selection method was presented in [9]. The method
determined the web services to be invoked during runtime
to build a composite web service, and used a finite state
machine model to describe the permitted invocation
sequences of the web service operations. In [10], a novel
web service selection approach with QoS and improved
trust management was presented. The approach only
considered the feedbacks of consumers with similar
preferences to deal with the meaningless feedbacks.
Zongkai YANG et al.[11] proposed a comprehensive
service composition with ant colony algorithm and the
genetic algorithm to meet the maxim satisfaction of QoS
requirements of users. In[12], a semantic composer was
proposed to find optimal composition length based on ant
colony optimization method. Based on the above works,
we propose an ACO-based heuristic approach and try to
apply it to the problem of the Web service composition
optimization.

III. DESCRIPTION OF THE WEB SERVICE

COMPOSITION PROBLEM

Definition 1: Quality of Service (QoS) is described as

a 5-tuple
 , , , ,QoS t c a rel rep

,where t is the service

response time, c is the one-time cost of calling a

service, a is the service availability, that is, the ratio of
times of successful executions to total execution times ,
rel is the reliability that refers to the ratio of service
operating time to total service operating time, and

1
() /

n

jj
rep e n


 

 is the mean value of n-times

evaluation score 1 2(, ,..., ,...,)j ne e e e
 to a service.

Definition 2: Web Service Instance(WSI) refers to a
web service with explicit URL which can be invoked
directly. It can be formally defined as a 6-

tuple
WSI (,)in out precondition effect QoS Url ， ， ， ，

 ,

where in and out are sets of input parameters and output
parameters respectively, precondition is the condition that
has to be satisfied before the invocation of the web service,
and effect is the new state generated after the invocation
of the web service, the combination of these parameters is
called IOPE, which determines the functional attributes of
the service instance, QoS and Url are non-functional
attributes of the service instance. Definition 3: Abstract
Web Service(AWS) :

1 2{ , ,..., ,..., }i nAWS WSI WSI WSI WSI

is a set of Web service instances with the same
functional properties and different non-functional

properties,
| |AWS

denotes the number of the Web service

instances included in the AWS .
Definition 4: Composite Service (CS) is described as

a 6-tuple
 , , , , ,CS S R QoS C W f

 , where

 1 2, , , , ,d nS AWS AWS AWS AWS  
 denotes the

collection of abstract web services ,
| . |CS S

refers to the

size of the collection, R S S  represents the relation
set among abstract web services, QoS is the quality

vector of the composite service, C={g(t), g(c), g(a), g(rel),
g(rep) } is the quality constraints that have to be met,
W={w1,w2,…,w5} is the weight vector of the elements in

QoS and it must satisfy the condition

5

1
1ii

w


 , and f
is the function which is employed to evaluate the
composite service quality.

Definition 5: Composite Service Instance (CSI) :

Select a concrete Web service instance
i

dWSI
 from

each abstract service dAWS
 of the composite service to

replace the abstract service, the formation of the
executable composite service scheme is called as a CSI,

where
i

dWSI
 denotes the i-th alternative Web service

instance in dAWS
,

 1,2,...,i AWSd
. One CS and its CSIs

follow the relation of one-to-many correspondence. The

function 1 1 2 5(... ..., , , ,...,)i nf QoS QoS QoS w w w   ，
is

employed to evaluate the quality of the composite service
in order to select the optimal solution or the suboptimal
solutions that meet customer’s needs. Each element in

1,i nQoS QoS QoS ，
 refers to the quality vector of

one WSI in the composite service, and 1 2 5, ,...,w w w
 are

the weights of the corresponding elements in the QoS
respectively. Main process control activities defined in
WS-BPEL[13] are as follows: sequence, flow, switch, and
while. Several component services can be aggregated into
one composite service through process control activities.
The computational model of the composite service is
shown in Table 1,where n is the number of all abstract
services in the composite service, c is the number of
abstract Web services in each core path of one flow-
control activity, b is the number of branches of one

switch-control activity or one flow-control activity, ip
 is

the probability for the i-th branch of one switch-control
activity to be run and it must meet the following

condition 1
1

b

ii
p




, l refers to the loop times of one
while-control activity. Take each branch of the non-
sequential service composition as the sequential sub-
composition and then process them in turn recursively.
Sequential service composition is the basis of other types
of service compositions. The Web service selection
process in this study can be represented with a directed

graph ,G V E  (the sequential service composition as
an example), as shown in Fig. 1. V is the set of the graph

1293

javascript:showjdsw('showjd_0','j_0')
javascript:showjdsw('showjd_0','j_0')

vertices, 1
() { , }

m

ii
V AWS S L




,where S and L are the
virtual start node and the virtual end node respectively,
which are additionally added to graph G, E is the set of all
edges in graph G,

1

11
(,)

n i

i
E S WSI


   

1
(,)

mn i

mi
WSI L


 

11 ,

11 1, 1
(,)

d dm n n i k

d dd i k
WSI WSI



  
  

where 1,i k

d dWSI WSI  
 is the ordered couple of two

vertices that represents one directed edge from the i-th

Web service instance, namely
i

dWSI
 in dAWS

, to

theadjacent k-th Web service instance, namely 1

k

dWSI  in

1dAWS  ,
{1,2,..., }di n

 and 1{1,2,..., }dk n 
， dn

 and

1dn  are the number of Web service instances included in

dAWS and
1dAWS 
 respectively. As shown in Fig. 1, the

in-degree and the out-degree of vertice i

dWSI are as

follows.

1deg ()i

in d dWSI AWS 
, 1deg ()i

out d dWSI AWS 
，

where {2,3,..., 1}d m  , {1,2,..., }di AWS .

IV. THE MODIFIED ANT COLONY SYSTEM(MACS)

A. The basic concepts of the MACS algorithm

Definition 6: Ant is described as a 9-tuple

  * *(, , ,)LA k C c tl P f P P fv P ，， ， ， ，
， where

Nk  is the identity of the ant, NC  is the number of

the total iterations, and
[1,]c C

 refers to the current
iteration number which increase monotonously with the

step 1, tl is the tabu list of the ant keeping a record of the

visited nodes.
 1 2, , , ,d nP p p p p  

is the solution
vector built by the ant after it has finished one complete
iteration, and the state of the tabu list at this moment is

called
()full tl

, that is ,
() ()tl P full tl 

. dp
is the d-

dimensional position of the solution vector ,
 f P

 is the
evaluation function (fitness function) for the solution

vector P ,
*P is the optimal solution vector of the ant in its

historical iterations, namely the best-so-far solution,
*fv

is the evaluation value of
*P ,that is

 * * fv f P
, LP

 is
the solution vector constructed by the ant in the last

iteration, and LP null
 for the first iteration.

Definition 7: Ant Colony(AC) is described as a 4-tuple:
* *

(, , ,)
g g

AC AS P fv ACD
where

 1 2, , ...,k mAS A A A A 
 is a set of ants and

 , 1,i j m 
,

. .i jA C A C
，

. () . ()
i j

A f P A f P
.That is,

all ants in the same AC have the same total evolutionary
cycles, the same evaluation function and the same solution

vector length.

*

gP
 is the optimal solution vector of the ant

colony in its evolutionary history,

*

gfv
is the corresponding

evaluation value of

*

gP
,

* *()g gfv f P
, ACD is the ant

colony diversity.
Definition 8: Solution Vector Distance(SVD) refers to

the ratio of the counts of different edges between
.iA P

and
.jA P

 to the total solution vector dimension after ant

iA
 and ant jA

finished building their solutions.

, , ,1

1
(,1,0)

D

i j i d j dd
SVD iff s s

D 
 

 (1)

where D is the dimension of the solution vector,

, [01]i jSVD  ，
 denotes the distance between

.iA P

and
.jA P

 , the smaller the value of ,i jSVD
is , the closer

the two solution vectors are. It is called an overlap

between
.iA P

 and
.jA P

 if , 0i jSVD 
, which is an

equivalence relation to satisfy the reflexivity, symmetry
and transitivity properties on the set of solution vectors.

Definition 9: Ant Colony Diversity(ACD):

1
() /

m

i,gi
ACD SVD m


 

 (2)
where m is the number of ants in the ant

colony , i,gSVD
 is the solution vector distance between

.iA P
and the global optimal solution vector

*

gP
, and

1AW S

2

1W SI

1

1

n

W SI

1

1W SI

dAW S

dn

dW SI

mAW S

2

mW SI

mn

mW SI

1

mW SI

S L
2

dW SI

1

dW SI

·
··

··· ···

·
··

·
··

Figure 1. The directed graph representation of the Web service

selection problem

TABLE I. THE QOS MODEL OF COMPOSITE SERVICES

 sequence flow switch while

T 1
n Tii  1

c Tcpii  1
b p Ti ii  1

nl Tii 

C 1
n Cii  1

n Cii  1
b p Ci ii  1

nl Cii 

A 1
n Aii  1

b Aii  1
b p Ai ii  ()1

ln Aii 

Rel 1
n Relii  1

b Relii  1
b p Reli ii  ()1

ln Relii 

Rep () /1
n Rep nii  () /1

b Rep bii  () /1
b p Rep bi ii  () /1

n Rel nii 

1294

javascript:showjdsw('showjd_0','j_0')

[0,1]ACD
. The greater the value of ACD , the

stronger the colony diversity. All the ants in the ant colony
completely overlap in the global optimal solution vector

*

gP
 when the condition 0ACD  is met.

B. Design of the fitness function of the MACS Algorithm

Assume that the user requirements for the quality of
the composite service CS are as follows:

{ , , , , }QC t T c C a A rel REL rep REP     

,
where T,C,A,REL and REP are values given by user in

advance. Then the mathematical model of Web service
composition optimization problem is as follows:

   
   
   
   
   

'

'

'

'

1

'

'

5 'max ()

1 0

1 0

1 0

1 0

'
1 0

'

'

. .

i ii
f Q w

tg t
T

cg c
C

ag a
A

relg rel
REL

rep
g rep

REP

s t


 

   



  



  

   



  




where iQ
is one quality attribute and

 ig Q
 denotes

one constraint. The MACS algorithm takes f as the
objective function for evaluating the quality of the current
solution vector built by one ant. Moreover, each quality
attributes which is used in the function f need to be
normalized as a dimensionless variable. In this study, the
5-dimensional quality model described in Definition 1 is
applied to describe the quality of a Web service. Different
QoS attributes may have different units of measurement,
and for those cost-oriented quality attributes such as time
and cost, it follows: the greater the value of the quality
attribute, the lower the evaluation value of the QoS, thus
the values of quality attributes need to be dimensionless
unitary as follows :

'

, , 1 ,

d

d i d i j j

m

iQ Q Q


 
 (3)

, , ,1

' 1
d

d i d i

m

j j iQ Q Q


  
 (4)

where ,d iQ
 is the i-th quality attribute of dWSI

.
Formula

proportional to the QoS value. Conversely, for those
quality attributes which are inversely proportional to the
QoS value , formula (8) is applied. The formula for
computing the quality of composition services(the
sequential service composition, for example) is :

5 '

1
()i ii

f w Q


 
where

'

iQ
 is the i-th quality

attribute, and iw
 is the corresponding weight of

'

iQ
,the

value of iQ
 can be computed according to the rules in

Definition 5 and Table 1.

C. Description of the MACS algorithm

As similar to the MMAS algorithm, the variation
range of the pheromone in MACS is limited to an interval

of min max[,] 
, the initial value of pheromone on each

directed edge is set to the maximum pheromone value,

namely the max
. The MACS algorithm adopts the

dynamic pseudo-random proportion selection parameter
which is computed in accordance with formula (5):

max

0 1
(1)

c Q
q

C C c


 

  
 (5)

where c is the current iteration number of the ant, C is

the total number of the iterations of the ant, maxQ
is a pre-

given constant which is set to 0.999 in this study. Before
the ant selects its next hop, it generates a random

number rand drawn from the interval of
[0,1]

 beforehand,

and compares rand with the value of 0q
，then the ant

selects the next node to be visited according to the
comparison result. The routing selection algorithm in the
MACS is described in Algorithm 1.

Algorithm 1. Ant route selection algorithm of the
MACS

Input: the ant kA
,the directed graph: ,G V E ，

two parameters  and


 which reflect the relative
importance of the pheromone information and the
heuristic information respectively.

Output: the nextnode to be visited by kA

Step1: 0 0(. , .)k kq getDynamicQ A c A C
, compute the

dynamic pseudo-random proportion selection parameter in
accordance with formula (5).

Step2:
()rand makeRand

, generate a random

number drawn from the interval of
[0,1]

.

Step3: 0(> q){if rand

select the nextNode to be visited using the traditional
ACO algorithm, as described in formula (1) .

return nextNode.

}

{else

select the nextNode to be visited using Algorithm 2.
return nextNode.

}

Algorithm 2. Random-weighted route selection
method

Input: the ant kA
,the directed graph: ,G V E ，

two parameters  and


Output: the nextnode to be visited by kA

Step1:
(. ,)k kneighbors getNeighbors A tl G

, obtain
all possible neighbors that may be visited according to the

tabu list of kA
 and the graph topology, each index

number of a candidate node in the collection kneighbors

denotes the corresponding position of the node.

1295

http://dict.cn/formula

Step2: get the position of the specific node in the

solution vector that kA
 has built at the last cycle, and the

position obtained is denoted by
(.)k Lidx A P

.
Step3: get the position of the specific node in the best

solution vector that kA
 has built at its historical cycles,

and the position obtained is denoted by
*(.)kidx A P

.
Step4: get the position of the specific node in the best-

so -far solution vector the ant colony has found and the

position obtained is denoted by

*.()gAC Pidx
.

Step5: calculate the value of the random

variable
kRV using the following formulas:

*() / 3k L gRV RV RV RV  
 , where

((.)) ((.)L

k L k LRV idx A P idx A P   
,

* * *((.)) ((.)k kRV idx A P idx A P   
,

* *(()) (().).g g

g AC P AC PRV idx idx   
,

where
((.))k Lidx A P

,
*((.))kidx A P

and
*.(())gAC Pidx

are the pheromones on each of the three edges from

the current node to the next nodes

(.)k Lidx A P
,

*(.)kidx A P
, and

*.()gAC Pidx

respectively,
((.))k Lidx A P

,
*.(())ACi Pdx

and
*.(())gAC Pidx

 are the corresponding heuristic

information,
 denotes  to the power of  , and


is

also the case.

Step6:

*((. ,), 1,)g

kr iff isStagnation AC fv rand RV
.

Step7: calculate the position of the next hop, namely,
the index number of the Web service instance node:

*(.) 2 ((.)next k L kidx idx A P r idx A P    

*() 2 (). .)kg Lidx iC d AA x PP  
.

Step8: return
 getRightNode ,next kidx neighbors

.

}

In Step 6 of Algorithm 2, the function
*(. ,)gisStagnation fvAS 

 returns true if the evolution of the
ant colony falls into stagnation, and then in this case, the
random variable r is set to a random number drawn from

the interval
(0,1]

. The state of stagnation means the best-

so-far fitness value of the ant colony, that is the

*

gfv
, does

not change in the last


 cycles. In Step7 of Algorithm 2,

nextidx
denotes the position of the next-hop node that

kA
will visit, the value of nextidx

 is the sum of
(.)k Lidx A P

and a weighted random variable with the weight of 2 r .

The variable nextidx
 calculated via Step7 may be a

floating-point or negative number, or a number whose

absolute value is greater than kneighbors
, so in Step8,

the function
 getRightNode ,next kidx neighbors

 is

employed to calculate the right value of nextidx
, that is, to

make nextidx
 be an integer that belongs to the

collection
{1,2,..., }kneighbors

. The main logic of this
function is described as follows:

()next kif idx neighbors

(mod)next next kidx idx neighbors
.

(0)nextif idx 

next k nextidx neighbors idx 
.

(0.5)next nextif idx idx   

 next nextidx idx    .

(0.5)next nextif idx idx   

 next nextidx index    .

(0.5)next nextif idx idx   

0,1(0, ,)next next nextidx iff R idx idx         .

The random variable 0,1R
 is the result of performing

the Bernoulli experiment one time with the probability

0.5 , that is
 1

1

0, (P , 0,1,(0)) .51k kp pR k k p   
.

The MACS algorithm is described as follows:
Algorithm 3. Modified Ant Colony System
Input: m : the population size of the ant colony,
C: the largest evolution cycles of the ant colony,
n: the number of the abstract Web services in

CS ,namely, the length of the solution vector built by one
ant,

dm
: the number of the candidate Web service

instances in dAWS
,

{1,2... }d n
,

QoS : the 5-dimensional QoS Vector of one Web

service instance in dAWS
,

.CS W : the weight vector corresponding to the QoS
vector of the composite service,

Output: the optimal or suboptimal solution in the ant
colony solution space,

Step1: initialize the directed graph ,G V E 

according to n and dm
, then set the initial pheromone on

each edge of G to the value of max
, and set the initial

heuristic information of each node of G to the value of

init
,which will keep unchanged during the whole

iterative process, the calculation method of init
 is as

follows:

2 2 2 2 21/ 1/ 1 /
init

Q

t c a rel rep
 

   
 (6)

1296

Where the five parameters
, , , ,t c a rel rep

 construct

the 5-dimensional QoS vector of iWSI
,

Q
 is a pre-given

constant greater than 0. Set the value of the current cycle
to zero, generate m ants for the ant colony.

Step2: initialize the state of each ant in the ant colony,
and place all ants to the start node of the directed graph,
the tabu list of each ant contains only one node, namely
the start node at this time.

Set the value of c to 1c  .

Step3: :do

1for k to m

kA
gets the next node to be visited using Algorithm 1.

kA
visits the next node and add the node to its tabu list.

kA
performs the local pheromone updating.

endfor
.

:until each ant has finished building a complete
solution, that is, its tabu list is full.

Step4:
1for k to m

Evaluate the quality of the solution built by kA
using

 .kf A P
.

Update the historical optimal solution of kA
 according

to the result of the evaluation.

Set the value of
.k LA P

 to
.kA P

.

endfor
.

Step5: select the global best ant bestA
 by comparing all

the solutions built by the ants.
* *. .g bestAAC P P

,

* *. .bestg AAC fv fv
.

Step6: bestA
 performs the global pheromone updating.

Step7:
()if c C

, go to Step2.

Step8: output

*. gAC P
 and

*. gAC fv
.

In Step3 of Algorithm 3, kA
performs the local

pheromone updating using the following formula:

*

() (1) (1)

. /

rs rs rs

rs k

c c

A fv n

    

 

     

   (7)

where the ordered couple ,r s  is an edge that kA

is building, the parameter


 is the pheromone

evaporation coefficient,  is a constant on the interval

(0,1]
 which is employed to control the proportion of the

pheromone increment and is set to 0.1 in this study,
*.kA fv
 is the best-so-far solution that kA

 has found till

the 1c  cycle, n is the size of the solution vector. The
local pheromone update mechanism makes the pheromone
on each edge of the solution vector decrease gradually to
avoid that the ants prematurely converge on the same path.

In Step6， bestA
applies the following formula to perform

the global pheromone updating:

*

() (1) (1)

.

best

ij ij ij

best

ij best

c c

A fv

   

 

      

   (8)

Similar to the MMAS, after each ant has constructed a
complete path, only the global best ant , that is, the ant
with the highest quality of solution , has a chance to
update the pheromone on its path. The ordered

couple
,i j 

 is an edge on the solution path of bestA
,


is the pheromone evaporation coefficient that belongs to

the interval (0,1],
*.bestA fv

is the fitness value of the

optimal solution that bestA
 has built at the current cycle.

The global pheromone update mechanism and the
application of the pseudo-random proportional rule make
the ants concentrate near the global optimal path , this not
only avoids that the ants search for their solutions blindly
and randomly but makes the searching process more
instructive.

Theorem 1: In MACS, let

*

_g bestfv
 be the real global

best fitness value in the solution space , let


 be the
pheromone evaporation coefficient of the global

pheromone updating, and let c be any cycle of the ant

colony, then for any edge , .r s G E  it holds that :
*

_lim ())(g bestrs
c

fvc 




Proof: In MACS, after any cycle when the best-so-far
ant performs the global pheromone updating, the amount

of pheromone it added to edge ,r s  is
*.best

rs bestA fv   
, as shown in formula (5) , where

(0,1]
 and

**

_. g bestbestA fv fv
. So we have:

*

_g best

best

rs fv 
. Then at cycle 1, the maximum

possible amount of pheromone added is

0

*

_(1) g bestfv   
 where 0 is the initial pheromone

on edge ,r s  , at cycle 2 it is:
* *

_ _

2

0 0

* *

_ _

(1) ((1) (1)

)

)

(1

g best g best

g best g best

fv fv

fv fv

    



       

   

 then at cycle c it is :

0 0_

1*(1) (1)g bes

c

tt

c tfv  



   

,where
1

0
(1)

c t

t







 is a geometric sequence with common ratio

(1)
, so the maximum possible amount of pheromone

that added at cycle c is :

*

_0(1)
1 c

g best

c fv








  
（1- ）

,

due to
(1) [0,1) 

, hence this sum asymptotically

converges to

*

_()g bestfv 
, so

*

_lim ())(g bestrs
c

fvc 




1297

http://dict.cnki.net/dict_result.aspx?searchword=%e5%ba%8f%e5%81%b6&tjType=sentence&style=&t=ordered+couples

V. EXPERIMENTS AND RESULTS ANALYSIS

A. The data sets and the experimental environment

In the experiments, the composite service adopts the
sequential model and takes five randomly generated data
sets D1, D2, ... D5 as the experimental data sets to test
how the MACS algorithm and its related algorithms work,
as shown in Table II. For better accuracy and consistency,
all data sets and their related data in the experiments are
written to files in advance. Each time before running, the
algorithms read the data sets from these files as the

experimental data which include: the number of
dimensions of the composite service, the number of the
candidate Web service instances for each abstract service,
the 5-dimensional QoS Vector of one Web service
instance, the weight vector corresponding to the QoS
vector of the composite service. Before the experiments,
the real global optimal solutions and their corresponding
fitness values are taken from the solution spaces formed
by the experimental data sets by using an exhaustive
search method in order to make the comparisons more
accurate. Assume that the set of all abstract service is

 1 2, , , , ,d nAWS AWS AWS AWS  , in Table 2, the

“solution vector size” refers to the number of abstract

Web Services in one composite service, namely the

| . |CS S , the “solution space size” is the product of the

sizes of all the abstract services, that is ,the
1
| |

n

dd
AWS

 ,

the “optimal fitness value” refers to the real best fitness

value which is taken from the solution space by using the

exhaustive search method. In this study, the number of the

total cycles is set to 300, and the population size of the ant
colony is set to 16. The experimental environment is as

follows: HP Proliant DL380 G5 server with Intel(R)

Xeon(R) CPU E5450 @ 3.00GHz and 4G RAM, the

operating system is Microsoft Windows Server 2003
Enterprise Edition Service pack 2. The development

environment are Eclipse SDK Version with JDK1.6.0 and

MATLAB7.4.0(R2007a). Each ACO related algorithm is

implemented in Java, and the results are written to files in
the experimental process, which will be read by a

MATLAB program for plotting the diagrams.

B. The experimental evaluation method

Definition 10:Algorithm Performance Evaluation Index

(APEI):

*

_ _ _

* *

_ _

()
1

2 1 ()

g n c n g n

g best g n

fv fv t
APEI

fv c





   
    

     

 (9)

The formula of APEI consists of two parts , where in the

first part, _1_

1
n

n

g g ee
fvf

n
v


 

is the mean of all the

final fitness values of n independently repeated

experiments, and
_g efv is the final fitness value after one

experiment, _ _1 1

1 1n C

c n g ce c
fv fv

n C 

 
  

 
  is the mean

of all mean fitness values in the iteration processes ,

where
_g cfv is one fitness value obtained at one cycle in

one fitness value obtained at one cycle in one

experiment.
*

_g bestfv

denotes the real global best fitness

value in the solution space. Then the proportion of

evolution is denoted by   *

_ _ _(2)g n c n g bestfv fv fv  ,

and the larger value of the proportion means the closer the

fitness value to the
*

_g bestfv

and the stronger the algorithm

to be. In the second part of the APEI,
*

_g nt is the total

counts of finding the
*

_g bestfv in n repeated experiments,

and
*

_g nc is the corresponding total cycles that are spent in

finding the
*

_g bestfv . The parameters  and  are two

nonnegative real numbers which are the impact factors to

represent the relative importance of
*

_g nt and
*

_g nc

respectively. The second part of the APEI means that, in n
independently repeated experiments, the more counts it has
found the real best global solution and the less
corresponding total cycles it has spent , the better the

algorithm is. In the experiments, the parameter  is set to

1.83, and  is set to 1.0, these express that we pay more

attention to the algorithm’s ability of finding the real
global best solution.
The methods of smoothing the curves of other variables in

this study are similar to this. Three ACO relative

algorithms are compared with each

other in this study, they are as follows: the traditional
ACO algorithm with the ant-cycle model which is called

TABLE II. THE DATA SETS FOR THE EXPERIMENTS

data set number solution vector size the number of WSIs solution space size optimal fitness value

D1 4 49, 32, 27, 39 1651104 1.8516

D2 5 22, 26, 17, 25, 32 7779200 2.3357

D3 6 31, 8, 10, 23, 20, 32 36505600 2.7090

D4 7 19, 11, 12, 17, 19, 20, 11 178218480 2.8973

D5 8 19, 11, 12, 17, 19, 20, 11, 8 1425747840 3.3769

1298

TACO in the following experiments, the MMAS

algorithm, and the MACS algorithm that is proposed in
this study.

The values of the related parameters are set as follows: the

evaporation coefficient of global pheromone algorithm,

and the MACS algorithm that is proposed in this study.
The values of the related parameters are set as follows: the

evaporation coefficient of global pheromone updating 

is set to 0.1784, the evaporation coefficient of local

pheromone updating  is set to 0.1784, the two

parameters  and  are each set to 1.0. In MMAS and

MACS, the upper and lower limits of the pheromone are

set to 0.999 and 0.001 respectively, the pseudo-random

proportional selection parameter in MMAS is set to
0.8125.

C. The experimental results

Perform the experiment one time on the data set D4,
and record the changing process of the indexes obtained in
300 iterations of the experiment, then plot these indexes
with their moving average values. In the TACO, there is
no mechanism of limited pheromone, and each ant can
update the pheromone, so the pheromone changes in a
slightly rising trend. Perform the experiment on D4
independently 150 times, and observe the fluctuation of the
final fitness value obtained in each experiment. As shown
in Fig .2, the fitness values in multiple repeated
experiments are always higher than that of the other two
algorithms, and the result keeps relatively steady.

D. The comprehensive performance test

Since all compared algorithms apply random variables,
the result of a single experiment may be uncertain and
inaccurate. Besides, the data sets used in the experiments
are randomly generated with different problem scales, so
we perform the experiment on each data set of
{D1,D2,…D5} respectively 150 times, and let each
experiment iterate for 300 cycles. Record the mean of
fitness values, the counts of finding the real best solution

and its corresponding total cycles that are spent, then
calculate the APEI value based on these indexes by using

formula (9)，as listed in Table 3 below. We also compute

the standard deviation of the final fitness values that are
obtained from the 150-times experiments on different data
sets in order to observe the stability of the fitness value
evolution. As can be seen from Fig. 3, generally, the
deviations between the final fitness values and their means
in the MACS are relatively smaller than that of the other
two compared algorithms.

Compute the mean values of APEI on D1~D5
respectively according to the related data listed in Table 3,
then we can get that: ACO.APEI=0.9186,
MMAS.APEI=1.0200, ACS.APEI =1.2288, as shown in
Fig .4. So in the problem of Web service selection, the
MACS algorithm demonstrates a better comprehensive
performance than the other two compared ACO algorithms,
the APEI value of the MACS algorithm is 20.3239%
higher than that of the MMAS algorithm.

Figure 2. Fitness values in 150 repeated experiments on D4

Figure 3. Standard deviation of the final fitness values in 150 repeated

experiments on D1~D5

Figure 4. The APEI values in 150 repeated experiments on D1~D5

1299

VI. CONCLUSIONS

In this paper we have proposed some useful concepts
and methods, such as the multiple solutions random-
weighted route selection method, the dynamic pseudo-
random proportion selection parameter, and the algorithm
performance evaluation index. These concepts and
methods provide a new thinking for application researches
of WSC optimization problem. Compared with the
standard MMAS algorithm, the MACS algorithm proposed
in this paper has better comprehensive performance in
Web service selection problem. However, whether the
MACS algorithm can get good application effect in other
optimization problems still needs to be researched.

ACKNOWLEDGMENT

We would like to thank the support of the National
Natural Science Foundation of China under grants (No.
61100028, 60803026, 61100028), the Fundamental
Research Funds for the Central Universities under grants
(No. N110404017); and the National Key Technology
R&D Program under grant No.2009BAH43B02,
No.2009BAH47B06．

REFERENCES

[1] W3C Working Group. Web services architecture: W3C Working

Group Note 11 February 2004. http://www.w3.org/TR/ws-arch/.

[2] Wu Q, Zhu Q. “Transactional and QoS-aware dynamic service
composition based on ant colony optimization”. Future Generation

Computer Systems,vol. 29(5),pp.1112-1119,2013.

[3] Wang, S.G., Sun, Q.B.,Zou, and H.,Yang,F.C. “Fuzzy Logic

Control for Web Service Selection”. Information Technology
Journal, vol.11,pp.399-401, 2012.

[4] R. Dinesh Kumar and Dr.G. Zayaraz. “A Qos Aware Quantitative
Web Service Selection Model”. International Journal on Computer

Science and Engineering(IJCSE), vol.3,pp.1534-1358,2011.

[5] FAN, X.Q.,FANG, X.W., and DING,Z.J. “Indeterminacy-aware
service selection for reliable service composition”. Front. Comput.

Sci. China, vol.5(1),pp.26–36, 2011.

[6] Chen，Y.P.， Zheng,Q.H.， and Zhang,J.K. “Mixed intelligent

optimization algorithm (MIOA): An algorithm for quality of
service (QoS) based web service selection”. International Journal

of the Physical Sciences , vol.7,pp.2554 – 2564,2012.

[7] Ludwig,S.A. “Applying Particle Swarm Optimization to Quality-
of-Service-Driven Web Service Composition”. Proceedings of

Advanced Information Networking and Applications (AINA), 2012
IEEE 26th International Conference， Fukuoka,Japan， 26-29

March, pp. 613- 620 . IEEE, Los Almitos, California,2012.

[8] Zhang W, Chang C K, Feng T, et al. “QoS-based dynamic web

service composition with ant colony optimization”.Computer
Software and Applications Conference (COMPSAC), 2010 IEEE

34th Annual. IEEE,pp.493-502,2010.

[9] Liu H, Zhong F, Ouyang B, et al. “An Approach for QoS-Aware
Web Service Composition Based on Improved Genetic Algorithm”.

Web Information Systems and Mining, International Conference
on IEEE.pp.123-128, 2010.

[10] Zhu,Y.J.,Wen,J.H.,Qin,M.W.,Zhou,G.L. “Web Service Selection
Mechanism with QoS and Trust Management”.Journal of

Information & Computational Science,vol.8,pp.2327–2334,2011.

[11] Yang Z, Shang C, Liu Q, et al. “A dynamic web services
composition algorithm based on the combination of ant colony

algorithm and genetic algorithm”. Journal of Computational
Information Systems ,vol.6(8),pp. 2617-2622, 2010.

[12] Dhore S R, Kharat M U. “QoS based web services composition
using ant colony optimization: mobile agent approach”.

International Journal of Advanced Research in Computer and
Communication Engineering, vol.1(7) ,pp. 519-527,2012.

[13] OASIS. “Web services business process execution language

version 2.0”. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.pdf.

TABLE III. THE RESULTS OF 150-TIMES REPEATED EXPERIMENTS FOR TACO/MMAS/MACS

dataset
_g nfv

_c nfv
*

_g nt
*

_g nc APEI DAPEITACO

D1 1.7269/1.7637/1.8437 1.6785/1.7241/1.7903 0/0/29 0/0/188.1 0.9196/0.9418/1.0667 0/2.12/16.04

D2 2.1268/2.2650/2.3316 2.0603/2.2035/2.3219 2/34/93 129.5/178.8/115.7 0.9086/1.0564/1.3667 0/16.03/48.37

D3 2.4785/2.5160/2.6847 2.4761/2.5152/2.5915 0/13/59 0/196.8/148.2 0.9145/0.9683/1.1783 0/5.85/29.88

D4 2.7456/2.8216/2.8948 2.7237/2.82272/2.8697 0/51/97 0/177.8/132.8 0.9439/1.1172/1.3324 0/17.88/40.82

D5 3.1028/3.2205/3.3617 3.0181/3.2525/3.2983 0/19/56 0/190.4/131.1 0.9063/1.0164/1.1997 0/10.08/31.69

 NOTE: DAPEITACO refers to the APEI difference with TACO

1300

