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Abstract—Web service composition optimization is a typical 

NP-hard problem to which the Ant Colony Optimization 

algorithm is applied appropriately for its excellent 

distributed computing capability and strong robustness. In 

this paper, we propose a new modified ant colony 

optimization algorithm called MACS and try to apply it in 

the problem of Web service composition optimization. The 

MACS algorithm employs both a non-linear dynamic 
parameter of the pseudorandom proportion selection rule 

and a random-weighted route selection method to control 

the behavior of the ant colony. Besides, the algorithm uses a 

five-dimensional quality vector and the fitness function to 

evaluate the ant solutions. Each ant updates the pheromone 

according to the quality of the solution it built, the 

pheromone variation range is limited in a max-min interval, 

so the evolution ability of the ant colony can be evidently 
improved with these measures. In the final experimental 

part, a novel algorithm performance evaluation method 

called APEI is presented. These concepts and methods 

provide a new thinking for application researches of WSC 

problem. Experimental results show that the MACS 

algorithm can achieve better performance than traditional 

ACO algorithms in WSC optimization. Some useful 

conclusions are obtained through the analysis and 
explanation of the experimental data, which lay a solid 

foundation for further researches. 

Keywords-Web service composition; quality of service; 

modified ant colony optimization; dynamic pseudorandom 

proportion selection paramete; algorithm performance 

evaluation index  

I.  INTRODUCTION  

Web services[1] are software systems identified by 
URIs which can support interoperable machine-to-
machine interaction over a network. Other systems 
interact with the Web service using XML based standards 
(e.g., SOAP, WSDL, and UDDI) and Internet protocols. 
Web service has become the core technology of new 
generation distributed processing systems. The function of 
a single Web service is very limited, WSC(Web Service 
Composition) can combine simple services into more 

complex new services so as to meet the demands of users. 
It can also make the system more adaptive in dynamic 
network environment. As a promising software reuse 
mechanism, WSC is given more and more attention by 
both the business and the academic communities, many 
researches on WSC have come forth continuously in 
recent years. In particular, the creation of value-added 
services by composition of existing ones is gaining a 
significant momentum[2]. Nowadays, the business 
environment among enterprises becomes more complex 
and changing, for each workflow activity there may exist 
many alternative Web services that provide overlapping or 
identical functionality but with different Quality of 
Service (QoS), thus a selection and composition method 
should be made to determine which services are to 
participate in a composite service, this is a typical NP-hard 
problem. It has become a key problem in WSC 
optimization field about how to select suitable ones from 
massive composition schemes, which possesses important 
theoretical significance and practical value. The rest of 
this paper is organized as follows. Section 2 gives a brief 
introduction to the related works. Section 3 describes the 
Web service composition problem. Section 4 gives a 
concrete exposition on the MACS algorithm. Section 5 
presents the experiment results of the MACS and its 
related algorithms. Section 6 concludes this paper. 

II. RELATED WORKS 

Many methods were proposed to solve the Web 
service selection problem. Shangguang Wang et al.[3] 
proposed a fast service selection method by using fuzzy 
logic to control the service selection process and used the 
mixed integer programming to assist users in obtaining 
suitable services. R. Dinesh Kumar et al. [4] proposed a 
web service selection model using Analytic Hierarchy 
Process which was used to select the best web service 
based on QoS Constraints. Xiaoqin FAN et al.[5] designed 
a  reliable  service  selection  algorithm  based  on  an  
improved  Markov decision process (IMDP) for reliable 
service composition, and proposed an effective method to 
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convert the  service  composition  of  IMDP  into  solving  
a non-homogeneous linear equation set. Yanping Chen et 
al. [6] proposed  a  new  algorithm,  called  Mixed  
Intelligent Optimization  Algorithm  (MIOA) to optimize  
service  selection  with  multiple  QoS  constraints  by 
using both Maximum  Entropy  Method  and  Social  
Cognitive  Optimization  theory. Ludwig,S.A[7] proposed 
a meta-heuristic method  based on Particle Swarm 
Optimization to address the Web service composition 
optimization problem, in which several  workflow  
requests  could be processed  simultaneously. In [8], a 
novel QoS-based service composition technique was 
proposed to work out a multi-objective optimization 
problem. A dynamic Web service composition and 
selection   method was presented in [9]. The method 
determined the web services to be invoked during runtime 
to build a composite web service, and used a finite state 
machine model to describe the permitted invocation 
sequences of the web service operations. In [10], a novel 
web service selection approach with QoS and improved 
trust management was presented. The approach only 
considered the feedbacks of consumers with similar 
preferences to deal with the meaningless feedbacks. 
Zongkai YANG et al.[11] proposed a comprehensive 
service composition with ant colony algorithm and the 
genetic algorithm to meet the maxim satisfaction of QoS 
requirements of users. In[12], a semantic composer was 
proposed to find optimal composition length based on ant 
colony optimization method. Based on the above works, 
we propose an ACO-based heuristic approach and try to 
apply it to the problem of the Web service composition 
optimization. 

III. DESCRIPTION OF THE WEB SERVICE 

COMPOSITION PROBLEM 

Definition 1:  Quality of Service (QoS) is described as 

a 5-tuple 
 , , , ,QoS t c a rel rep

,where t  is the service 

response time, c  is the one-time cost of calling a 

service, a is the service availability, that is, the ratio of 
times of successful executions to total execution times , 
rel is the reliability that refers to the ratio of service 
operating time to total service operating time, and  

1
( ) /

n

jj
rep e n


 

 is the mean value of n-times 

evaluation score 1 2( , ,..., ,..., )j ne e e e
 to a service. 

Definition 2: Web Service Instance(WSI) refers to a 
web service with explicit URL which can be invoked 
directly. It can be formally defined as a 6-

tuple
WSI ( ,  )in out precondition effect QoS Url ， ， ， ，

 ,

where in  and out  are sets of input parameters and output 
parameters respectively, precondition is the condition that 
has to be satisfied before the invocation of the web service, 
and effect is the new state generated after the invocation 
of the web service, the combination of these parameters is 
called IOPE, which determines the functional attributes of 
the service instance, QoS and Url are non-functional 
attributes of the service instance. Definition 3: Abstract 
Web Service(AWS) : 

1 2{ , ,..., ,..., }i nAWS WSI WSI WSI WSI
 

is a set of Web service instances with the same 
functional properties and different non-functional 

properties, 
| |AWS

denotes the number of the Web service 

instances included in the AWS . 
Definition 4: Composite Service (CS)  is described as 

a 6-tuple 
 , , , , ,CS S R QoS C W f

 , where 

 1 2, , , , ,d nS AWS AWS AWS AWS  
 denotes the 

collection of abstract web services , 
| . |CS S

refers to the 

size of the collection, R S S   represents the relation 
set among abstract web services, QoS is the quality 

vector of the composite service, C={g(t), g(c), g(a), g(rel), 
g(rep) } is the quality constraints that have to be met, 
W={w1,w2,…,w5} is the weight vector of the elements in 

QoS and it must satisfy the condition 

5

1
1ii

w


 ,  and  f  
is the function which is employed to  evaluate the 
composite service quality.  

Definition 5: Composite Service Instance (CSI) :  

Select a concrete Web service instance 
i

dWSI
 from 

each abstract service dAWS
 of the composite service to 

replace the abstract service, the formation of the 
executable composite service scheme is called as a CSI, 

where 
i

dWSI
 denotes the i-th alternative Web service 

instance in dAWS
, 

 1,2,...,i AWSd
. One CS and its CSIs 

follow the relation of one-to-many correspondence. The 

function 1 1 2 5( ... ..., , , ,..., )i nf QoS QoS QoS w w w   ，
is 

employed to evaluate the quality of the composite service 
in order to select the optimal solution or the suboptimal 
solutions that meet customer’s needs. Each element in 

1 ... ...,i nQoS QoS QoS ，
 refers to the quality vector of 

one WSI in the composite service, and 1 2 5, ,...,w w w
 are 

the weights of the corresponding elements in the QoS 
respectively. Main process control activities defined in 
WS-BPEL[13] are as follows: sequence, flow, switch, and 
while. Several component services can be aggregated into 
one composite service through process control activities. 
The computational model of the composite service is  
shown in Table 1,where n is the number of all abstract 
services in the composite service, c is the number of 
abstract Web services in each core path of one flow-
control activity, b is the number of branches of one 

switch-control activity or one flow-control activity, ip
 is 

the probability for the i-th branch of one switch-control 
activity to be run and it must meet the following 

condition 1
1

b

ii
p




, l refers to the loop times of one 
while-control activity. Take each branch of the non-
sequential service composition as the sequential sub-
composition and then process them in turn recursively. 
Sequential service composition is the basis of other types 
of service compositions. The Web service selection 
process in this study can be represented with a directed 

graph ,G V E  (the sequential service composition as 
an example), as shown in Fig. 1. V is the set of the graph 
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vertices, 1
( ) { , }

m

ii
V AWS S L




,where S and L are the 
virtual start node and the virtual end node respectively, 
which are additionally added to graph G, E is the set of all 
edges in graph G, 

1

11
( , )

n i

i
E S WSI


   

1
( , )

mn i

mi
WSI L


 

 
11 ,

11 1, 1
( , )

d dm n n i k

d dd i k
WSI WSI



  
  

 

where 1,i k

d dWSI WSI  
 is the ordered couple of two 

vertices that represents one directed edge from the i-th 

Web service instance, namely 
i

dWSI
 in dAWS

, to 

theadjacent k-th Web service instance, namely 1

k

dWSI   in 

1dAWS  , 
{1,2,..., }di n

 and 1{1,2,..., }dk n 
， dn

 and 

1dn   are the number of Web service instances included in 

dAWS  and 
1dAWS 
 respectively. As shown in Fig. 1, the 

in-degree and the out-degree of  vertice i

dWSI  are as 

follows. 

1deg ( )i

in d dWSI AWS 
,  1deg ( )i

out d dWSI AWS 
， 

where {2,3,..., 1}d m  , {1,2,..., }di AWS . 

 
 

IV. THE MODIFIED ANT COLONY SYSTEM(MACS) 

A. The basic concepts of the MACS algorithm 

Definition 6: Ant is described as a 9-tuple 

  * *( , , , )LA k C c tl P f P P fv P ，， ， ， ，
， where 

Nk  is the identity of the ant, NC  is the number of 

the total iterations, and 
[1, ]c C

 refers to the current 
iteration number which increase monotonously with the 

step 1, tl  is the tabu list of the ant keeping a record of the 

visited nodes.
 1 2, , , ,d nP p p p p  

is the solution 
vector built by the ant after it has finished one complete 
iteration, and the state of the tabu list at this moment is 

called 
( )full tl

, that is , 
( ) ( )tl P full tl 

. dp
is the d-

dimensional position of the solution vector ,
 f P

 is the 
evaluation function (fitness function) for the solution 

vector P ,
*P is the optimal solution vector of the ant in its 

historical iterations, namely the best-so-far solution, 
*fv
 

is the evaluation value of 
*P ,that is 

 * * fv f P
, LP

 is 
the solution vector constructed by the ant in the last 

iteration, and LP null
 for the first iteration. 

Definition 7: Ant Colony(AC) is described as a 4-tuple: 
* *

( , , , )
g g

AC AS P fv ACD
where

 1 2, , ...,k mAS A A A A 
 is a set of ants and 

 , 1,i j m 
,

. .i jA C A C
，

. ( ) . ( )
i j

A f P A f P
.That is, 

all ants in the same AC have the same total evolutionary 
cycles, the same evaluation function and the same solution 

vector length.

*

gP
 is the optimal solution vector of the ant 

colony in its evolutionary history,

*

gfv
is the corresponding 

evaluation value of

*

gP
,

* *( )g gfv f P
, ACD is the ant 

colony diversity. 
Definition 8: Solution Vector Distance(SVD) refers to  

the ratio of the counts of different edges between 
.iA P

 

and  
.jA P

 to the total solution vector dimension after ant 

iA
 and ant jA

finished building their solutions. 

, , ,1

1
( ,1,0)

D

i j i d j dd
SVD iff s s

D 
 

     (1) 

where D  is the dimension of the solution vector, 

, [01]i jSVD  ，
 denotes the distance between 

.iA P
 

and
.jA P

 , the smaller the value of ,i jSVD
is , the closer 

the two solution vectors are. It is called an overlap 

between 
.iA P

 and  
.jA P

 if , 0i jSVD 
, which is an 

equivalence relation to satisfy the reflexivity, symmetry 
and transitivity properties on the set of solution vectors. 

Definition 9: Ant Colony Diversity(ACD):  

1
( ) /

m

i,gi
ACD SVD m


 

     (2) 
where m is the number of ants in the ant 

colony , i,gSVD
  is the solution vector distance between 

.iA P
and the global optimal solution vector 

*

gP
, and 

1AW S

2

1W SI

1

1

n

W SI

1

1W SI

dAW S

dn

dW SI

mAW S

2

mW SI

mn

mW SI

1

mW SI

S L
2

dW SI

1

dW SI

·
··

··· ···

·
··

·
··

 
Figure 1.  The directed graph representation of the Web service 

selection problem 

TABLE I. THE QOS MODEL OF COMPOSITE SERVICES 

 sequence flow switch while 

T  1
n Tii   1

c Tcpii   1
b p Ti ii   1

nl Tii   

C  1
n Cii   1

n Cii   1
b p Ci ii   1

nl Cii   

A  1
n Aii   1

b Aii   1
b p Ai ii   ( )1

ln Aii 
 

Rel  1
n Relii   1

b Relii   1
b p Reli ii   ( )1

ln Relii 
 

Rep  ( ) /1
n Rep nii   ( ) /1

b Rep bii   ( ) /1
b p Rep bi ii   ( ) /1

n Rel nii   
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[0,1]ACD
. The greater the value of ACD , the 

stronger the colony diversity. All the ants in the ant colony 
completely overlap in the global optimal solution vector 

*

gP
 when the condition 0ACD   is met. 

B. Design of the fitness function of the MACS Algorithm 

Assume that the user requirements for the quality of 
the composite service CS are as follows: 

 
{ , , , , }QC t T c C a A rel REL rep REP     

, 
where T,C,A,REL and REP are values given by user in 

advance. Then the mathematical model of Web service 
composition optimization problem is as follows: 

   
   
   
   
   

'

'

'

'

1

'

'

5 'max ( )

1 0

1 0

1 0

1 0

'
1 0

'

'

. .

i ii
f Q w

tg t
T

cg c
C

ag a
A

relg rel
REL

rep
g rep

REP

s t


 

   



  



  

   



  




 

where iQ
is one quality attribute and 

 ig Q
 denotes  

one constraint. The MACS algorithm takes f as the 
objective function for evaluating the quality of the current 
solution vector built by one ant. Moreover, each quality 
attributes which is used in the function f need to be 
normalized as a dimensionless variable. In this study, the 
5-dimensional quality model described in Definition 1 is 
applied to describe the quality of a Web service. Different 
QoS attributes may have different units of measurement, 
and for those cost-oriented quality attributes such as time 
and cost, it follows: the greater the value of the quality 
attribute, the lower  the evaluation value of the QoS, thus 
the values of quality attributes need to be dimensionless 
unitary as follows : 

'

, , 1 ,

d

d i d i j j

m

iQ Q Q


 
           (3) 

, , ,1

' 1
d

d i d i

m

j j iQ Q Q


  
        (4) 

where ,d iQ
 is the i-th quality attribute of dWSI

. 
Formula  

proportional to the QoS value. Conversely, for those 
quality attributes which are inversely proportional to the 
QoS value , formula (8) is applied. The formula for 
computing the quality of composition services(the 
sequential service composition, for example) is : 

5 '

1
( )i ii

f w Q


 
where 

'

iQ
 is the i-th quality 

attribute, and iw
 is the corresponding weight of

'

iQ
,the 

value of iQ
 can be computed according to the rules in 

Definition 5 and Table 1.  

C. Description of the MACS algorithm 

As similar to the MMAS algorithm, the variation 
range of the pheromone in MACS is limited to an interval 

of min max[ , ] 
, the initial value of  pheromone on each 

directed edge is set to the maximum pheromone value, 

namely the max
. The MACS algorithm adopts the 

dynamic pseudo-random proportion selection parameter 
which is computed in accordance with formula (5): 

max

0 1
(1 )

c Q
q

C C c


 

  
    (5) 

where c is the current iteration number of the ant, C is 

the total number of the iterations of the ant, maxQ
is a pre-

given constant which is set to 0.999 in this study. Before 
the ant selects its next hop, it generates a random 

number rand drawn from the interval of 
[0,1]

 beforehand, 

and compares rand with the value of 0q
，then the ant 

selects the next node to be visited according to the 
comparison result. The routing selection algorithm in the 
MACS is described in Algorithm 1. 

Algorithm 1. Ant route selection algorithm of the 
MACS 

Input: the ant kA
,the directed graph: ,G V E ，

two parameters  and 


 which reflect the relative 
importance of  the pheromone information and the 
heuristic information respectively. 

Output: the nextnode to be visited by kA
 

Step1: 0 0( . , . )k kq getDynamicQ A c A C
, compute the 

dynamic pseudo-random proportion selection parameter in 
accordance with formula (5). 

Step2: 
()rand makeRand

, generate a random 

number drawn from the interval of 
[0,1]

. 

Step3:  0(  > q ){if rand
 

select the nextNode to be visited using the traditional 
ACO algorithm, as described in formula (1) . 

return  nextNode. 

}
 

{else
 

select the nextNode to be visited using Algorithm 2. 
return  nextNode. 

}
 

Algorithm 2. Random-weighted route selection 
method 

Input: the ant kA
,the directed graph: ,G V E ，

two parameters  and 


  

Output: the nextnode  to be visited by kA
 

Step1:
( . , )k kneighbors getNeighbors A tl G

, obtain 
all possible neighbors that may be visited according to the 

tabu list of kA
 and the graph topology, each index 

number of a candidate node in the collection kneighbors
 

denotes the corresponding position of the node. 
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Step2: get the position of the specific node in the 

solution vector that kA
 has built at the last cycle, and the 

position obtained is denoted by 
( . )k Lidx A P

. 
Step3: get the position of the specific node in the best 

solution vector that kA
 has built at its historical cycles, 

and the position obtained is denoted by 
*( . )kidx A P

. 
Step4: get the position of the specific node in the best-

so -far solution vector the ant colony has found and the  

position obtained is denoted by 

*.( )gAC Pidx
. 

Step5: calculate the value of the random 

variable
kRV using the following formulas: 

*( ) / 3k L gRV RV RV RV  
 , where  

( ( . )) ( ( . )L

k L k LRV idx A P idx A P   
, 

* * *( ( . )) ( ( . )k kRV idx A P idx A P   
, 

* *( ( )) ( ( ). ).g g

g AC P AC PRV idx idx   
, 

where 
( ( . ))k Lidx A P

,
*( ( . ))kidx A P

and 
*.( ( ))gAC Pidx

 
are the pheromones on each of the three edges from 

the current node to the next nodes 

( . )k Lidx A P
,

*( . )kidx A P
, and 

*.( )gAC Pidx
 

respectively,
( ( . ))k Lidx A P

,  
*.( ( ))ACi Pdx

and 
*.( ( ))gAC Pidx

 are the corresponding heuristic 

information, 
  denotes   to the power of  , and 


is 

also the case. 

Step6: 

*( ( . , ), 1, )g

kr iff isStagnation AC fv rand RV
. 

Step7: calculate the position of the next hop, namely, 
the index number of the Web service instance node: 

*( . ) 2 ( ( . )next k L kidx idx A P r idx A P    
 

*( ) 2 ( ). . )kg Lidx iC d AA x PP  
. 

Step8: return  
 getRightNode ,next kidx neighbors

. 

}
 

In Step 6 of Algorithm 2, the function  
*( . , )gisStagnation fvAS 

 returns true if the evolution of the 
ant colony falls into stagnation, and then in this case, the 
random variable r  is set to a random number drawn from 

the interval 
(0,1]

. The state of stagnation means the best-

so-far fitness value of the ant colony, that is the

*

gfv
, does 

not change in the last 


 cycles. In Step7 of Algorithm 2, 

nextidx
denotes the position of the next-hop node that 

kA
will visit, the value of nextidx

 is the sum of 
( . )k Lidx A P

 

and a weighted random variable with the weight of 2 r . 

The variable nextidx
 calculated via Step7 may be a 

floating-point or negative number, or a number whose 

absolute value is greater than kneighbors
, so in Step8, 

the function 
 getRightNode ,next kidx neighbors

 is 

employed to calculate the right value of nextidx
, that is, to 

make nextidx
 be an integer that belongs to the 

collection
{1,2,..., }kneighbors

. The main logic of this 
function is described as follows: 

( )next kif idx neighbors
 

( mod )next next kidx idx neighbors
. 

( 0)nextif idx 
 

next k nextidx neighbors idx 
. 

( 0.5)next nextif idx idx     

    next nextidx idx    . 

( 0.5)next nextif idx idx     

    next nextidx index    . 

( 0.5)next nextif idx idx     

0,1( 0, , )next next nextidx iff R idx idx         . 

The random variable 0,1R
 is the result of performing 

the Bernoulli experiment one time with the probability 

0.5 , that is 
 1

1

0, (P , 0,1,( 0 )) .51k kp pR k k p   
. 

The MACS algorithm is described as follows: 
Algorithm 3.  Modified Ant Colony System 
Input: m : the population size of the ant colony, 
C: the largest evolution cycles of the ant colony, 
n: the number of the abstract Web services in 

CS ,namely, the length of the solution vector built by one 
ant, 

dm
: the number of the candidate Web service 

instances in dAWS
, 

{1,2... }d n
, 

QoS : the 5-dimensional QoS Vector of  one Web 

service instance in dAWS
, 

.CS W : the weight vector corresponding to the QoS 
vector of the composite service, 

Output: the optimal or suboptimal solution in the ant 
colony solution space, 

Step1: initialize the directed graph ,G V E   

according to n and dm
, then set the initial pheromone on 

each edge of G  to the value of max
, and set the initial 

heuristic information of each node of G  to the value of 

init
,which will keep unchanged during the whole 

iterative process, the calculation method of init
 is as 

follows: 

2 2 2 2 21/ 1/ 1 /
init

Q

t c a rel rep
 

   
   (6) 
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Where the five parameters 
, , , ,t c a rel rep

 construct  

the 5-dimensional QoS vector of iWSI
, 

Q
 is a pre-given 

constant greater than 0. Set the value of the current cycle 
to zero, generate m ants for the ant colony. 

Step2:  initialize the state of each ant in the ant colony, 
and place all ants to the start node of the directed graph, 
the tabu list of each ant contains only one node, namely 
the start node at this time. 

Set the value of c  to 1c  . 

Step3: :do  

1for k to m
 

kA
gets the next node to be visited using Algorithm 1. 

kA
visits the next node and add the node to its tabu list. 

kA
performs the local pheromone updating. 

endfor
. 

:until each ant has finished building a complete 
solution, that is, its tabu list is full. 

Step4: 
1for k to m

 

Evaluate the quality of the solution built by kA
using 

 .kf A P
. 

Update the historical optimal solution of kA
 according 

to the result of the evaluation. 

Set the value of 
.k LA P

 to 
.kA P

. 

endfor
. 

Step5: select the global best ant bestA
 by comparing all 

the solutions built by the ants. 
* *. .g bestAAC P P

, 

* *. .bestg AAC fv fv
. 

Step6: bestA
 performs the global pheromone updating. 

Step7: 
( )if c C

,  go to Step2. 

Step8: output 

*. gAC P
 and 

*. gAC fv
. 

In Step3 of Algorithm 3, kA
performs the local 

pheromone updating using the following formula: 

*

( ) (1 ) ( 1)

. /

rs rs rs

rs k

c c

A fv n

    

 

     

     (7) 

where the ordered couple ,r s   is an edge that kA
 

is building, the parameter 


 is the pheromone 

evaporation coefficient,  is a constant on the interval 

(0,1]
 which is employed to control the proportion of the 

pheromone increment and is set to 0.1 in this study, 
*.kA fv
 is the best-so-far solution that kA

 has found till 

the 1c  cycle, n is the size of the solution vector. The 
local pheromone update mechanism makes the pheromone 
on each edge of the solution vector decrease gradually to 
avoid that the ants prematurely converge on the same path. 

In Step6， bestA
applies the following formula to perform 

the global pheromone updating: 

*

( ) (1 ) ( 1)

.

best

ij ij ij

best

ij best

c c

A fv

   

 

      

         (8) 

Similar to the MMAS, after each ant has constructed a 
complete path, only the global best ant , that is, the ant 
with the highest quality of solution , has a chance to 
update the pheromone on its path. The ordered 

couple
,i j 

 is an edge on the solution path of bestA
, 


 
is the pheromone evaporation coefficient that belongs to 

the interval (0,1], 
*.bestA fv

is the fitness value of the 

optimal solution that bestA
 has built at the current cycle. 

The global pheromone update mechanism and the 
application of the pseudo-random proportional rule make 
the ants concentrate near the global optimal path , this not 
only avoids that the ants search for their solutions blindly 
and randomly but makes the searching process more 
instructive. 

Theorem 1:  In MACS, let 

*

_g bestfv
 be the real global 

best fitness value in the solution space , let 


 be the 
pheromone evaporation coefficient of the global 

pheromone updating, and let c be any cycle of the ant 

colony, then for any edge , .r s G E   it  holds that :  
*

_lim ( ) )( g bestrs
c

fvc 



 

Proof: In MACS, after any cycle when the best-so-far 
ant performs the global pheromone updating, the amount 

of pheromone it added to edge ,r s   is 
*.best

rs bestA fv   
, as shown in formula (5) , where 

(0,1]
 and 

**

_. g bestbestA fv fv
. So we have: 

*

_g best

best

rs fv 
. Then at cycle 1, the maximum 

possible amount of pheromone added is 

0

*

_(1 ) g bestfv   
 where 0  is the initial pheromone 

on edge ,r s  , at cycle 2 it is:  
* *

_ _

2

0 0

* *

_ _

(1 ) ( (1 ) (1 )

)

)

(1

g best g best

g best g best

fv fv

fv fv

    



       

   

 then at cycle c  it is : 

0 0_

1*(1 ) (1 )g bes

c

tt

c tfv  



   

,where
1

0
(1 )

c t

t







 is a geometric sequence with common ratio 

(1 )
, so the maximum possible amount of pheromone 

that added at  cycle c  is : 

*

_0(1 )
1 c

g best

c fv








  
（1- ）

, 

due to 
(1 ) [0,1) 

, hence this sum asymptotically 

converges to 

*

_( )g bestfv 
, so 

*

_lim ( ) )( g bestrs
c

fvc 



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V. EXPERIMENTS AND RESULTS ANALYSIS 

A. The data sets and the experimental environment 

In the experiments, the composite service adopts the 
sequential model and takes five randomly generated data 
sets D1, D2, ... D5 as the experimental data sets to test 
how the MACS algorithm and its related algorithms work, 
as shown in Table II. For better accuracy and consistency, 
all data sets and their related data in the experiments are 
written to files in advance. Each time before running, the 
algorithms read the data sets from these files as the 

experimental data which include: the number of 
dimensions of the composite service, the number of the 
candidate Web service instances for each abstract service, 
the 5-dimensional QoS Vector of one Web service 
instance, the weight vector corresponding to the QoS 
vector of the composite service. Before the experiments, 
the real global optimal solutions and their corresponding 
fitness values are taken from the solution spaces formed 
by the experimental data sets by using an exhaustive 
search method in order to make the comparisons more 
accurate. Assume that the set of all abstract service is  

 

 1 2, , , , ,d nAWS AWS AWS AWS  , in Table 2, the 

“solution vector size” refers to the number of abstract 

Web Services in one composite service, namely the 

| . |CS S , the “solution space size” is the product of the 

sizes of all the abstract services, that is ,the
1
| |

n

dd
AWS

 , 

the “optimal fitness value” refers to the real best fitness 

value which is taken from the solution space by using the 

exhaustive search method. In this study, the number of the 

total cycles is set to 300, and the population size of the ant 
colony is set to 16. The experimental environment is as 

follows: HP Proliant DL380 G5 server with Intel(R) 

Xeon(R) CPU E5450 @ 3.00GHz and 4G RAM, the 

operating system is Microsoft Windows Server 2003 
Enterprise Edition Service pack 2. The development 

environment are Eclipse SDK Version with JDK1.6.0 and 

MATLAB7.4.0(R2007a).  Each ACO related algorithm is 

implemented in Java, and the results are written to files in 
the experimental process, which will be read by a 

MATLAB program for plotting the diagrams.  

B.  The experimental evaluation method 

Definition 10:Algorithm Performance Evaluation Index 

( APEI): 

*

_ _ _

* *

_ _

( )
1

2 1 ( )

g n c n g n

g best g n

fv fv t
APEI

fv c





   
    

     

  (9) 

The formula of APEI consists of two parts , where in the 

first part, _1_

1
n

n

g g ee
fvf

n
v


 

 
is the mean of all the 

final fitness values of n independently repeated 

experiments, and 
_g efv  is the final fitness value after one  

experiment, _ _1 1

1 1n C

c n g ce c
fv fv

n C 

 
  

 
   is the mean 

of all mean fitness values in the iteration processes , 

where 
_g cfv  is one fitness value obtained at one cycle in  

one fitness value obtained at one cycle in one 

experiment.
*

_g bestfv
 
denotes the real global best fitness 

value in the solution space. Then the proportion of  

evolution is denoted by   *

_ _ _(2 )g n c n g bestfv fv fv   , 

and the larger value of the proportion means the closer the 

fitness value to the
*

_g bestfv
 
and the stronger the algorithm 

to be. In the second part of the APEI, 
*

_g nt  is the total 

counts of finding the 
*

_g bestfv in n repeated experiments, 

and 
*

_g nc is the corresponding total cycles that are spent in 

finding the 
*

_g bestfv . The parameters   and   are two 

nonnegative real numbers which are the impact factors to 

represent the relative importance of 
*

_g nt  and 
*

_g nc  

respectively. The second part of the APEI means that, in n 
independently repeated experiments, the more counts it has 
found the real best global solution and the less 
corresponding total cycles it has spent , the better the 

algorithm is. In the experiments, the parameter   is set to 

1.83, and   is set to 1.0, these express that we pay more 

attention to the algorithm’s ability of finding the real 
global best solution. 
The methods of smoothing the curves of other variables in 

this study are similar to this. Three ACO relative 

algorithms are compared with each  

other in this study, they are as follows: the traditional 
ACO algorithm with the ant-cycle model which is called 

TABLE II. THE DATA SETS FOR THE EXPERIMENTS 

data set number solution vector size the number of WSIs solution space size optimal fitness value 

D1 4 49, 32, 27, 39 1651104 1.8516 

D2 5 22, 26, 17, 25, 32 7779200 2.3357 

D3 6 31, 8, 10, 23, 20, 32 36505600 2.7090 

D4 7 19, 11, 12, 17, 19, 20, 11 178218480 2.8973 

D5 8 19, 11, 12, 17, 19, 20, 11, 8 1425747840 3.3769 
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TACO in the following experiments, the MMAS 

algorithm, and the MACS algorithm that is proposed in 
this study. 

The values of the related parameters are set as follows: the 

evaporation coefficient of global pheromone algorithm, 

and the MACS algorithm that is proposed in this study. 
The values of the related parameters are set as follows: the 

evaporation coefficient of global pheromone updating   

is set to 0.1784, the evaporation coefficient of local 

pheromone updating   is set to 0.1784, the two 

parameters  and   are each set to 1.0. In MMAS and 

MACS, the upper and lower limits of the pheromone are 

set to 0.999 and 0.001 respectively,  the pseudo-random 

proportional selection parameter in MMAS is set to 
0.8125. 

C.  The experimental results  

Perform the experiment one time on the data set D4, 
and record the changing process of the indexes obtained in 
300 iterations of the experiment, then plot these indexes 
with their moving average values. In the TACO, there is 
no mechanism of limited pheromone, and each ant can 
update the pheromone, so the pheromone changes in a 
slightly rising trend. Perform the experiment on D4 
independently 150 times, and observe the fluctuation of the 
final fitness value obtained in each experiment. As shown 
in Fig .2, the fitness values in multiple repeated 
experiments are always higher than that of the other two 
algorithms, and the result keeps relatively steady. 
 

 

D. The comprehensive performance test 

Since all compared algorithms apply random variables, 
the result of a single experiment may be uncertain and 
inaccurate. Besides, the data sets used in the experiments 
are randomly generated with different problem scales, so 
we perform the experiment on each data set of 
{D1,D2,…D5} respectively 150 times, and let each 
experiment iterate for 300 cycles. Record the mean of 
fitness values, the counts of finding the real best solution 

and its corresponding total cycles that are spent, then 
calculate the APEI value based on these indexes by using 

formula (9)，as listed in Table 3 below. We also compute 

the standard deviation of the final fitness values that are 
obtained from the 150-times experiments on different data 
sets in order to observe the stability of the fitness value 
evolution. As can be seen from Fig. 3, generally, the 
deviations between the final fitness values and their means 
in the MACS are relatively smaller than that of the other 
two compared algorithms.  

 
 

Compute the mean values of APEI on D1~D5 
respectively according to the related data listed in Table 3, 
then we can get that: ACO.APEI=0.9186, 
MMAS.APEI=1.0200, ACS.APEI =1.2288, as shown in 
Fig .4. So in the problem of Web service selection, the 
MACS algorithm demonstrates a better comprehensive 
performance than the other two compared ACO algorithms, 
the APEI value of the MACS algorithm is 20.3239%  
higher than that of the MMAS algorithm. 

Figure 2.  Fitness values in 150 repeated experiments on D4 

 
Figure 3.  Standard deviation of the final fitness values in 150 repeated 

experiments on D1~D5 

 
Figure 4.    The APEI values in 150 repeated experiments on D1~D5 
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VI. CONCLUSIONS 

In this paper we have proposed some useful concepts 
and methods, such as the multiple solutions random-
weighted route selection method, the dynamic pseudo-
random proportion selection parameter, and the algorithm 
performance evaluation index. These concepts and 
methods provide a new thinking for application researches 
of WSC optimization problem. Compared with the 
standard MMAS algorithm, the MACS algorithm proposed 
in this paper has better comprehensive performance in 
Web service selection problem. However, whether the 
MACS algorithm can get good application effect in other 
optimization problems still needs to be researched. 
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TABLE III. THE RESULTS OF 150-TIMES REPEATED EXPERIMENTS FOR TACO/MMAS/MACS 

dataset 
_g nfv  

_c nfv  
*

_g nt  
*

_g nc  APEI DAPEITACO 

D1 1.7269/1.7637/1.8437 1.6785/1.7241/1.7903 0/0/29 0/0/188.1 0.9196/0.9418/1.0667 0/2.12/16.04 

D2 2.1268/2.2650/2.3316 2.0603/2.2035/2.3219 2/34/93 129.5/178.8/115.7 0.9086/1.0564/1.3667 0/16.03/48.37 

D3 2.4785/2.5160/2.6847 2.4761/2.5152/2.5915 0/13/59 0/196.8/148.2 0.9145/0.9683/1.1783 0/5.85/29.88 

D4 2.7456/2.8216/2.8948 2.7237/2.82272/2.8697 0/51/97 0/177.8/132.8 0.9439/1.1172/1.3324 0/17.88/40.82 

D5 3.1028/3.2205/3.3617 3.0181/3.2525/3.2983 0/19/56 0/190.4/131.1 0.9063/1.0164/1.1997 0/10.08/31.69 

 NOTE: DAPEITACO refers to the APEI difference with TACO 
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