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Abstract—Objective: A novel Greedy Randomized Adaptive 

Search Procedure was proposed in this paper to resolve the 

traveling salesman problem, which is proven to be NP-

complete in most cases. 

Methods: The proposed novel algorithm has two phases. In 

the first phase the novel algorithm finds an initial solution of 

the problem with a proposed mergence feature greedy 

randomized method. In the second phase the expanded 
neighborhood adaptive search procedure was proposed to 

find the TSP solution. 

Results: The proposed algorithm was tested on numerous 

benchmark problems from TSPLIB. The algorithm is 

compared with other two algorithms and the results showed 

that the results of the proposed algorithm are always the best. 

The results were very satisfactory. 

Conclusion: For the majority of the instances the results 
were equal to the best known solution. The algorithm is 

suitable for the TSP. This kind of novel algorithm can be 

used for many aspects of object, especially for logistical 

problem. 

Keywords-Randomized Adaptive Search Procedure; 

traveling salesman problem; optimal algorithm; Greedy 

Randomized Adaptive Search Procedure; NP-complete 

problem 

I. INTRODUCTION 

The traveling salesman problem (TSP)[1] is one of the 
well-known and extensively studied NP-hard combi-
natorial optimization problem. Consider a salesman who 
has to visit n cities. Given a finite set of cities together 
with the cost of travel between n cities, find a tour of 
lowest cost which visits each city just once and returns to 
the city of origin. Cost can be distance, time, money, 
energy, etc. We speak of a symmetric TSP[2], if for all 
pairs i, j the distance dij is equal to the distance dji. We 
speak of Euclidean TSP[3], if the cities can be represented 
as points in the plain such that dij is the Euclidean distance 
between point i and point j. Graph theory defines the 
problem as finding the Hamiltonian cycle[4] with the least 

weight for a given complete weighted graph. In this paper, 
Euclidean symmetric TSP (EsTSP) with Hamiltonian cycle 
(HC) is considered. 

TSP is applied widely in engineering and business such 
as logistics. It has been used in designing hard-ware 
devices, communications, and etc. In addition, some 
industrial problems such as machine scheduling and 
cellular manufacturing can be formulated as a TSP[5]. 

It is natural to define the EsTSP in terms of a com-plete 
undirected weighted graph UWG = (V,E) with V = 
{v1,v2,v3,…,vn} representing nodes collection in UWG, 
and E = {eij}n×n representing the edges collection 
between nodes in UWG. n = |V|, represented the number of 
nodes in UWG. the distance between node i and node j can 
be defined as wij. In EsTSP, wij = wji. EsTSP obeys in 
particular the triangle inequality wij≤ wik + wkj for all i, j, 

k. The main difficulty in finding the optimal HC (OHC) is 
that the number of tours increases in proportion to the 
factorial of the number of nodes. If there are n nodes, the 
number of tours is (n−1)!/2[6]. It‟s too huge to calculate 
OHC when n is big enough. 

Algorithms for solving the TSP may be divided into 
two classes, exact algorithms and heuristic algorithms. The 
exact algorithms, such as branch and cut algo-rithms[7], 
are suitable for less nodes TSP. when more nodes TSP 
must be calculated, heuristic optimal algo-rithms, which 
were the motioned in this paper, were used to find OHC. 
These algorithms include Genetic Algorithm (GA)[8], 
Particle Swarm Optimization (PSO)[9], ant colony 
optimization (ACO)[10], Gravita-tion Field Algorithm 
(GFA)[11-13] and etc. 

Greedy Randomized Adaptive Search Procedure 
(GRASP)[14] is two phase optimal algorithm which can be 
used to combinatorial optimization. Every iteration 
consists of two phases. One is construction phase, the other 
is the optimal search phase. In the first phase, greedy 
random method provides feasible solutions incorporating 
both greedy and random characteristics. A start node can 
be selected firstly, The choice of the next node to be added 
is determined by ordering all nodes in a restricted 
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candidate list (RCL) with respect to a greedy function. 
Greedy method will be used to select the next node to form 
a HC in RCL. The random method in the first phase is also 
used to choose one of the best candidate in RCL but not 
necessary the top candidate node. In the second phase, an 
optimal search algorithm is used to find OHC from HCs. 
GA, PSO, GFA can be used for this part. 

A novel expended GRASP (eGRASP) was proposed to 
solve EsTSP described above in this paper. eGRASP was 
divided into two phases. One is the construction part, 
which was proposed in this paper. This method is a kind of 
greedy random method with fusion characteristic. This 
method is based on traditional Kruskal‟s algorithm, but the 
restriction for the cycle path part is removed. Some local 
HCs (LHCs) can be calculated by this method, but these 
LHCs will be merged into a whole HC with fusion 
characteristic. The second part of the algorithm is the 
optimal search part, which was based 2-opt and 3-opt[15] 
methods. These two method was used one by one to search 
the optimal results. 

The proposed eGRASP is compared with GRASP, 2-
opt and 3-opt with TSPLIB database. And the effi-ciency 
of eGRASP is proved to solve TSP. 

II. METHOD 

In the previous section, the traditional GRASP was 
produced. And the framework of the proposed eGRASP in 
this paper was presented. In this section, the eGRASP 
algorithm will be described in detail step by step. The 
addition and the edition of edges is a very important part in 
this algorithm. The selection of the data structure in 
eGRASP will be the special part in this paper and based on 
the operation of edges. The edge collection which contains 
two column and n rows is the data structure in the 
proposed algorithm. The first column is the start point in 
the corresponding edge, the other column is the end point 
of the edge. A row presents a weight value of an edge in 
the graph. n represents the number of nodes in the graph. 

The eGRASP can be divided into two parts, con-
struction phase and search phase. The details will be 
described as below. 

A. Construction phase of eGRASP 

Construction phase consists of two parts. In stage one, 
the RCL will be created. And the best candidate edge for 
the tour inclusion in the current iterator will be selected 
from the RCL. Initially, all edges which were possible 
belonged to the tour will be created by order-ing these 
edges from the smallest to the largest. From this list, the 
first D edges were selected to form the RCL. D is the 
dimension of the RCL, which means D smallest edges 
were in the RCL. In the RCL, the next edge will be 
selected randomly from RCL in t iterator. Then the RCL 
will be readjusted by replaying the edge included in the 
RCL by another edge which is not included in the RCL. 

The stage two is the kernel part in the construction 
phase. In this stage, the modified Kruskal‟s algorithm was 
used. Kruskal‟s algorithm, which is a total greedy 
algorithm, is one of the most important construction 
algorithm for searching OHC. Different from the tra-
ditional Kruskal‟s algorithm, the nearest merger method 
was used to search for more accurate results. For 
traditional algorithm, prevention for HC cycle path in one 

iteration must be done when a new edge was added to the 
tour. For the proposed modified Kruskal‟s algorithm, this 
HC cycle prevention examination is not necessary. So 
many sub HCs (sHCs) will be created which consists of 
sequence T1, ..., Tn such that each Ti is a set of n − i + 1 
disjoint sub-tours. All sHCs were covered by all the nodes. 
In this part, one tour is T1, the other tour is T2. The total 
procedure is described as below: 

1. If both T1 and T2 consist of one single node, then 
these two tours are merged in one tour. 

2. If T1 consists of one single node k, T2 contains at 
least two nodes, the merged tour is then the TOUR (T2, k). 
For every edge eij in T2, which contains i and j as end 
nodes, if dik+dkj−dij is the minimum in all possible edges, 
the merged TOUR will be changed by deleting eij and 
adding eik and ejk. If T2 consists of one single node k‟, T1 
contains at least two nodes, then the merged tour is the 
TOUR(T1, k‟). For every edge eij in T1, if dik + dkj− dij is 
the minimum in all possible edges, the merged TOUR will 
be changed by deleting eij and adding eik‟ and ejk‟. 

3. If both at least two nodes are belonged to the un-
merged tour T1 and T2, i and j are nodes in T1, k and l are 
nodes in T2. For every nodes pair eij and ekl, If dik+ djl− 
dij− dkl is minimized in all possible cases, the merged tour 
is then changed by deleting eij and ekl and replacing them 
by eik and ejl. 

The three kinds of merged procedure were showed as 
Fig. 1. In Fig. 1, (a) represents the case of merging T1 and 
T2 which both contained one single node described above. 
(b) represents the case of merging T1, which contains at 
least two nodes with a sub tour, and T2, which contains 
one single node. The right tour is T2, which contains only 
node k, and the left tour is T1. (c) represents the case of 
merging T1 and T2 which both contained non-single node 
sub tour. The left tour is T1, and the right node is T2 in this 
figure. 

After every sHC was added to the merged total HC, the 
construction phase ended. One initial OHC which is not 
the final best results can be obtained in this part. 

B. Search phase of eGRASP 

When the initial OHC is obtained, the search phase is 
used for more accurate result. Two different local search 
algorithms, namely 2-opt and 3-opt method which are 
belonged to k-opt, were used to search the final result. 
Through the computation of two kinds of k-opt algorithms, 
k edges were deleted and k other edges were added. Given 
a feasible initial OHC, the proposed search phase of 
eGRASP examines every possible solution near to the 
constructed OHC and finds out another lower cost 
neighboring solution. Using the mixed k-opt method, 
lower cost solutions can be calculated by deleting k edges 
from the current tour and reconnected the corresponding 
unconnected nodes using k new edges. In this paper, a 
mixed neighborhood searching method, which includes 2-
opt and 3-opt, are used. 
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(a)

(b)

(c)  
Figure 1. Three situations of merging two sub-HCs to a larger HC. 

Firstly, 2-opt procedure was used. In this method, 2 
edges were deleted and 2 new edges were reconnected 
between these 4 nodes. Note that there is only one way to 
reconnect the paths. In this paper, traditional 2-opt are not 
used. The restricted algorithm, which is more complex, is 
used for EsTSP. The deleted two edge are not selected 
randomly like traditional 2-opt, more conditions are used 
in the algorithm. 

Initially, all edges in the initial OHC are ordered from 
largest to smallest costs, using a list structure. And the 
edge on the top list is selected as eij. The nodes i and j are 
the end nodes. Let nodes k and l are the end nodes for any 
other candidate edge ekl in the tour T. The two candidate 
edges for deletion in the tour are expected to obey the 
equation: 

T‟=T\eij\ekl∪eil∪ejk.                

In this equation, T is the initial tour solution. T‟ is the 
searched OHC solution. „\‟ represents the deletion 
operation, and „∪‟ represents the inclusion operation. The 

edge eij represents the largest edge in the ordered edges. 
ekl represents the other candidate edge in the tour. The 
proposed algorithm will examine every edge in the tour to 
find out the suitable ekl which can make length of T‟ 
minimum in the equation. The edges eil and ejk represent 
two new edges for inclusion. Compare T with T‟ in one 
iteration, if the total distance of T‟ is longer, the operation 
of the quation is canceled. Otherwise, T‟ replace T in this 
iteration. The 2-opt method terminates when a certain 
number of edges is deleted. For most case of the algorithm, 

the number of iteration is not large, which is equal to n(the 
number of nodes) at most. One instance of 2-opt is shown 
as below: 

 
i l

k j

i l

k j

i l

k j

i l

k j

(a) (b)

(c) (d)  
Figure 2. One instance of one improved 2-opt 

In Fig .2. (a) represents the initial feasible OHC 
solution of the algorithm. (b) represents the tour in which 
eij is deleted. (c) represents the tour in which ekl is deleted. 
Compare T and T‟, the total distance of T‟ is shorter than T 
in this iteration. (d) represents the tour in which eil and ekj 
are reconnected. 

After the improved 2-opt method in our work was used 
as above, a similar improved 3-opt was used. Not like 
randomly selected method in traditional 3-opt method, the 
edges for selection are more carious. When 3 edges are 
deleted from the current tour T, T will break into three 
parts instead of two parts like 2-opt. Because of the larger 
neighborhood than 2-opt, 3-opt method have more results 
which are more reasonable and complex. There are C(n,3) 
methods to remove the three edges. Even when the three 
edges are fixed, there are also eight ways to reconnect the 
corresponding nodes to reform the tour T. If local 
optimization of 2-opt is achieved, the 3-opt algorithm has 
now the possibility to escape from it and find out a better 
OHC. 

Firstly, all the edges are ordered from largest to 
smallest. The largest length of edge eij will be selected. 
Then the algorithm will examine all possible candidate 
edges in the tour T to and find out other two candidate 
edges ekl and emn which make the value of the total new 
tour‟s length be minimum in Eq. (2) as below. 

T‟=T\eij\ekl\emn ∪ eim ∪ eln ∪ ejk

                 In Eq. (2), eij is the edge which has 
the longest length in the tour T. The edges ekl and emn are 
the candidate edges. The edges eim, eln and ejk are the 
new edges, which reconnect these six nodes i, m, l, n, k, 

and j, in the tour. „\‟ represents the deletion operation. ‟ ∪‟ 

represents the inclusion operation. Compare T with T‟ in 
the lengths of the two tours. If T‟ is shorter, the operation 
will be remained. Otherwise, this iteration of 3-opt will be 
canceled. The number of iteration in 3-opt will be not large 
enough, which is n at most. One instance of 3-opt is shown 
as below: 
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Figure 3. Instance of one improved 3-opt 

C. The procedure of the eGRASP 

The procedure of the eGRASP can be described as 
below: 

1. An initial solution of eGRASP can be established 
according to the greedy random algorithm. Every edge 
must be ordered by their lengths to form the RCL. Then 
many local HCs will be constructed from the RCL. Finally, 
initial OHC can be merged by these HCs. 

2. find out a more accurate OHC according to 2-opt 
method. 

3. the final result of the OHC will be found out 
according to 3-opt. 

4. If the end condition of the proposed algorithm 
reached, the eGRASP ended. Otherwise, the algorithm 
goes to 1. 

III. EXPERIMENT 

To test the efficiency of the proposed algorithm 
eGRASP, 20 different two-dimensions EsTSP instances 
from TSPLIB database were tested. The number of nodes 
in these instances is from 105 to 783. Every instance name 
in the experiments can be divided into two parts, the first 
part is the instance name, the other part is the number of 
nodes. For example, Eil in Eil51 is the instance name. 51 
in Eil51 is the number of nodes in the TSP instance. The 
proposed algorithm is compared with the other three kinds 
of algorithms to test the algorithm‟s efficiency. These three 
kinds of algorithms are traditional GRASP, 2-opt and 3-opt. 
20 different runs for the four algorithms were used to test 
these instances data. The optimal values of all instances 
were calculated for their comparison. The search phase of 
traditional GRASP were 2-opt method. The length of RCL 
for both traditional GRASP and eGRASP is 50. The edge 
selection method of both 2-opt and 3-opt is random. 

The results of the four algorithms for 20 instances are 
shown as Table 1 and Table 2 as below: 

 
 
 
 
 
 

TABLE I  THE BEST LENGTH OF FOUR ALGORITHMS WITH 20 TSPLIB 

INSTANCES 

 Best length 

eGRASP GRASP 2-opt 3-opt 

Lin105 14379 15764 135450 14379 
Pr107 44303 49836 209996 135124 
Pr124 59030 65369 211327 126915 
Pr136 96772 102003 1133200 690952 
Pr144 58537 61162 280392 81366 
Pr152 73682 84183 289570 209994 
Rat195 2331 2546 17330 9315 
D198 15788 16383 76533 112354 

Pr226 80414 94360 1138829 218604 
Gil262 2385 2616 27632 9678 
Pr264 49135 55517 264838 345910 
Pr299 48235 54251 552269 258786 
Rd400 15385 16618 91839 67542 
Pr439 107401 123147 806272 494270 
Pcb442 50941 56921 494578 203620 
D493 35253 38196 362971 151209 

Rat575 6863 7500 60483 36981 
P654 34707 38908 550477 56122 
D657 49531 55180 419176 221082 

Rat783 8897 9890 88676 45967 

TABLE II  THE RE VALUE OF FOUR ALGORITHMS WITH 20 TSPLIB 

INSTANCES 

 RE value 

eGRASP GRASP 2-opt 3-opt 

Lin105 0.00 9.63 8.42 0.00 
Pr107 0.00 12.49 3.74 2.05 
Pr124 0.00 10.74 2.58 1.15 
Pr136 0.00 5.41 10.71 6.14 
Pr144 0.00 4.48 3.79 0.39 
Pr152 0.00 14.25 2.93 1.85 
Rat195 0.34 9.60 6.46 3.01 
D198 0.05 3.82 3.85 6.12 

Pr226 0.05 17.41 13.17 1.72 
Gil262 0.29 10.01 10.62 3.07 
Pr264 0.00 12.99 4.39 6.04 
Pr299 0.09 12.57 10.46 4.37 
Rd400 0.68 8.75 5.01 3.42 
Pr439 0.17 14.86 6.52 3.61 
Pcb442 0.33 12.10 8.74 3.01 
D493 0.71 9.13 9.37 3.32 

Rat575 1.32 10.73 7.93 4.46 
P654 0.18 12.31 14.89 0.62 
D657 1.26 12.81 7.57 3.52 

Rat783 0.00 9.63 8.42 0.00 
The best lengths and RE values of all instances for the 

four algorithms were shown in Table 1 and Table 2 
respectively. In Table 1 and Table 2, eGRASP represents 
the proposed algorithm in this paper, GRASP represents 
the traditional GRASP algorithm. The RE value represents 
the relative error value which is shown as Eq. (3) as below: 

RE=(Lbest-Lopt)/Lopt×100%   (3) 

In Eq. (3), Lbest represents the best length obtained by 
the four algorithms which is the value in Table 1. The Lopt 
represents the optimal value obtained by the TSPLIB 
database. The corresponding Lopt can be downloaded 
from the database website as below: http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/. The 
best length is the minimum result in the 20 different runs. 
The efficiency of the four different algorithms can be seen 
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from Table 2.  The RE values of eGRASP were the 
minimum in the four different algorithms results in most 
cases. For the instances with all kinds of number of nodes, 
the RE value is smaller than 1.5%. The corresponding RE 
value were smaller than the results from GRASP, 2-opt or 
3-opt. 3-opt is better than the other two algorithms. The 
worst algorithm is traditional GRASP. 

The accuracy of the proposed eGRASP were tested 
above. Then the relative time consumption of every phase 
in the proposed algorithms were tested and compared. 20 
different runs were used to test the eGRASP time 
consumption. And the best direct value obtained by the 
eGRASP can be seen from Table 4. The two results were 
shown as Table 3 and Table 4 as below. 

TABLE III  THE TIME CONSUMPTION PERCENT OF THE THREE 

ALGORITHMS WITH 20 TSPLIB INSTANCES 

 time consumption percent(%) 

Kruskal 2-opt 3-opt 

Lin105 4.8 1.8 93.4 
Pr107 4.9 1.6 93.5 
Pr124 4.4 1.5 94.1 
Pr136 3.6 1.4 95 
Pr144 3.2 1.4 95.4 
Pr152 3.7 1.2 95.1 
Rat195 2.5 1.2 96.3 
D198 3.6 1.1 95.3 

Pr226 2.5 1.1 96.4 
Gil262 1.8 0.9 97.3 
Pr264 2.5 0.9 96.6 
Pr299 1.8 1 97.2 
Rd400 2.1 0.6 97.3 
Pr439 1.2 0.6 98.2 
Pcb442 1.4 0.5 98.1 
D493 1.2 0.4 98.4 

Rat575 1 0.4 98.6 
P654 0.7 0.3 99 
D657 1.26 0.4 99.3 

Rat783 0.00 0.3 98.9 

TABLE IV   THE DIRECT VALUES OF THE THREE ALGORITHMS WITH 20 

TSPLIB INSTANCES 

 direct values 

Kruskal 2-opt 3-opt 

Lin105 21112 15764 14379 
Pr107 56587 49836 44303 
Pr124 84078 65369 59030 
Pr136 143527 102003 96772 
Pr144 87281 61162 58537 
Pr152 97398 84183 73682 
Rat195 3498 2546 2331 
D198 19700 16383 15788 

Pr226 112729 94360 80414 
Gil262 3308 2616 2385 
Pr264 71794 55517 49135 
Pr299 68071 54251 48235 
Rd400 21378 16618 15385 
Pr439 153667 123147 107401 
Pcb442 74886 56921 50941 
D493 46089 38196 35253 

Rat575 9587 7500 6863 
P654 45809 38908 34707 
D657 67962 55180 49531 

Rat783 12623 9890 8897 

The time consumption can be seen from Table 3. The 
time consumption percent of the 3-opt procedure were 
greater than 95% except the first 3 instances. If the 3-opt 
method were not used in the proposed algorithm eGRASP, 
the results will be not accuracy enough, but running time 
of the algorithm will be shorter than the algorithm 2-opt 
used only. So the mixed method was used in the search 
phase in this paper. 

IV. CONCLUSION 

A novel algorithm named eGRASP was proposed in 
this paper for the solution of the EsTSP. The new 
algorithm is one modification of the well know Greedy 
Random Adaptive Search Procedure. The computational 
results obtained using eGRASP were in most cases equal 
to the optimal value downloaded from the Heidelberg 
University TSPLIB database. As an example, the result of 
Lin105 obtained from eGRASP is equal to the value in 
TSPLIB. The improvement of the proposed algorithm 
were in the quality, but the running time is longer. 

The improvement is both in the construction phase and 
the search phase in eGRASP. In the construction phase, the 
Kruskal‟s algorithm was modified. And many small local 
cycles can be obtained and used to reform the whole cycle 
TSP path. In the search phase, two traditional search 
algorithm 2-opt and 3-opt were mixed to find out the more 
accuracy results for EsTSP. 

20 instances downloaded from the TSPLIB database 
were used to prove the proposed algorithm‟s efficiency of 
the eGRASP. Most of the best results obtained were from 
eGRASP. The relative time consumptions are summarized 
in Table 3. And the most time are consumed in the 3-opt 
method for more accuracy results. 
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