
Identification Of Seed Users Via Short Messages

Based On Hadoop

Ye Zhiwei

School of Software Engineering
South China University of Technology

Guangzhou, China

316553421@qq.com

Zhang Pingjian

School of Software Engineering
South China University of Technology

Guangzhou, China

pjzhang@126.com

* Corresponding author

Abstract—With the rapid growth of the text processing

technology, many knowledge discovery approaches have been

introduced to handle large corpus. Data mining methods such

as clustering and categorization, for example, have found wide

applications in corpus processing. Recently, association rule
mining methods also have a place in this field. However, due to

the huge amount of "items" contained in corpus, the

traditional association rule mining algorithms encounter great

effectiveness and efficiency challenges. In this paper, a new

parallel association rule mining algorithm especially

customized for corpus is developed and implemented using the

MPI programming interface. The main ideas are to adopt a

distributed inverted index hash table, and to design a
communication scheme based on "chessboard decomposition"

to accelerate the generation of candidate itemsets. Experiments

are are devised and conducted on the Tianhe-II

Supercomputer of Guangzhou National Super Computing

Center. The experimental results demonstrate that the new

algorithm has achieved desirable performance, with a speedup

rate of 16 when using 49 processes altogether.

Keywords-Corpus processing; parallel association rule
mining; inverted index hash table; MPI; speedup

I. INTRODUCTION

Human society is experiencing the age of information
explosion, data from various fields is accumulated at an
amazing rate. Internet in China, for example, has become a
huge warehouse of data [1]. Web pages are mainly
composed of text, multimedia information and hyper-links
among them, with text being the largest part. Since text is
usually semi-structured or unstructured, how to deal with
huge amounts of unstructured data presents a major
challenge in the field of data mining and becomes a hot topic,
attracting much attentions from either academic or industrial
community. Most research work in corpus processing
utilizes some sort of machine learning approaches. Graph-
based methods, for example, has been used for natural
language processing [2]. The Huffman encoding algorithm
finds its role in improving accuracy of text clustering [3].
Methods for mining structural information from text corpus
have been surveyed in [4]. Concept based methods such as
formal concept analysis also contribute to knowledge
processing of corpus [5,6].

Recently, association rules begin to play a role in this
field [7,8,9]. A content-based book recommendation system
has been developed by mining associations among Amazon
books[10]. In [11], retrieval of clinical text has been
improved using semantic-based association rule mining.
However, the most prominent characteristics of text
document is that it might contains a large amount of words,
giving rise to huge number of frequent itemsets. Thus,
traditional algorithms such as Apriori and FP-Growth could
not scale well on text corpus.

Nowadays, high performance multi-core computer
clusters together with supercomputers begin to provide
powerful computing service for research institutes,
organizations and enterprizes as well. Parallelization
solutions are more and more popular and become the trend
of the big data era. As early as in 1996, Agrawal has
proposed a parallel Apriori based association rule mining
algorithm [12], which was then improved by various
researchers. Nevertheless, due to the sparsity of terms in
corpus and hence much fewer shared prefixes, FP-Growth
algorithm tends to generate an FP-Tree with a large number
of nodes and branches, which would greatly impact the
efficiency. To overcome this difficulty, an HI-Apriori
algorithm has been presented in [13], which adopts an
inverted index hash table instead of an FP-Tree to hold the
corpus. On one hand, HI-Apriori retains the advantage of FP-
Growth, avoiding generating frequent itemsets and scanning
the dataset multiple times. On the other hand, it is much
efficient than FP-Growth when handling corpus.

In this paper, the HI-Apriori algorithm is extended to a
parallelization version, called PHI-Apriori. First, the HI-
Apriori algorithm is analyzed to identify the computational
extensive area. Then, parallelization are designed w.r.t the
hot spot, using the "chessboard decomposition" strategy. The
PHI-Apriori algorithm is implemented via the MPI interface
and finally, experiments are carried out in the Guangzhou
National Super Computing Center. Numerical results show
that PHI-Apriori achieves satisfactory speedup and scales
well for corpus of various size and computing clusters of
various configurations.

International Conference on Education, Management, Computer and Society (EMCS 2016)

© 2016. The authors - Published by Atlantis Press 1814

II. ANALYSIS OF HI-APRIORI

The main idea of HI-Apriori is to introduce an inverted
index hash table which facilitates generation of frequent
itemsets.

A. Preprocess of the corpus

Mining text usually requires some sort of preprocessing
so that the remaining text only contains necessary
information. Web pages crawled from the internet, for
example, need to get rid of the tags, hyperlinks, multimedia,
advertisements etc, with only pure text left. For some
languages like Chinese, an additional step word
segmentation must be carried out to tokenize the sentences.
The HI-Apriori resorts to third-party libraries for this job and
focuses on generation of frequent itemsets. Moreover, modal
particle, as well as stop words, are filtered, leaving only
meaningful terms.

B. Inverted index hash table

Inverted index hash table is an important tool in
document processing, and plays an essential role in the field
of information retrieval. In [13], it is found that inverted
index hash table can also be used to mining association rules
in corpus. In fact, two kinds of hash tables are designed in
HI-Apriori: one for generation of candidate frequent itemsets,
one for filter of candidate frequent itemsets. Experiments in
[13] has shown that while FP-Tree is suitable for mining
traditional transaction dataset, inverted index hash table is
more efficient for mining corpus.

For distributed computing platforms, the inverted index
hash table can be constructed parallelly. Each process will
build an inverted index hash table for the allocated portion of
the corpus, and for each term, its indexed list might appear in
multiple processes, hence, these local inverted index hash
tables need to merge into a global inverted index hash table.

C. Generation of frequent itemsets

Like the Apriori algorithms, the HI-Apriori generates
frequent k-itemsets from frequent (k-1)-itemsets by the join
manipulation. Since the number of combinations grows by
square, the join manipulation consumes most of the
computation time and is the hot spot, thus, parallelization is
utilized to address this issue.

Suppose the frequent (k-1)-itemsets are allocated to a
group of processes, then, besides making join with itself, the
itemsets within each process need to join with that of other
processes. To do so, processes need to exchange itemsets
among them using some communication scheme.

III. DESIGN OF PHI-APRIORI

A. Partition of the corpus

Assume that there are n nodes and p processes.

Denote by D the corpus, by D the number of documents

contained in D , and by M the total size of D . Suppose

process i is assigned a subset iS of D that contains ir

documents, 1i p , then,

1

1
p

i i

i

r D r

iS is determined by

1

0

0 0

{ 1 0}
i i

i j k k

k k

S d D r j r r

such that

() 1im S M p i p

where ()im S is the size of
iS and 0 is a sufficiently

small number. However, Eq. (1)-(3) is a NP-Complete

problem which requires heavy computational overhead.

Thus, the MULTIFIT algorithm [14] for the dual packing
problem is adopted here to find a sub-optimal solution. The

tasks are then allocated to the processes via MPI_Scatter.

B. Distributed inverted index hash table

After the assignment of workload, each process
constructs a local inverted index hash table, as illustrated by
the first picture in Figure1. These index hash tables should
be merged to a global inverted index hash table for later use.
To achieve this, PHI-Apriori collects the bucket split
information of local inverted index hash table of each
process via MPI_Gather, determines the maximum number
of split, and broadcast it to all processes via MPI_Bcast.
Each process then splits completely its local inverted index
hash table according to this number so that all the local
inverted index hash tables have the same entries and buckets,
and there is only one entry pointing to each bucket. Notice
that, a complete split might results in some empty buckets
which cost few spaces and have little impact on performance.

Since local inverted index hash tables are split
completely, it is straightforward to merge: just merge the
buckets under the same entry. There are two ways to do so.
One is that the main process collects all the inverted index
hash tables and then merges in the main process. The
alternative is that each process will be responsible for the
merge of some buckets, sending out buckets of other
processes’ duty and receiving buckets of its own duty via
MPI_Alltotal. Then, each process merges buckets. Finally,
each process sends out its merged buckets and receives
others merged buckets via MPI_Alltotal, and finally, all
processes obtain a copy of the global inverted index hash
table.

C. Generation of candidate frequent itemsets

Generation of frequent itemsets begins with frequent 1-

itemsets. In the previous step, when a process i has merged

the allocated buckets, it is able to generates a frequent 1-

itemset (1)iF , whose union
1

(1) (1)
P

ii
F F

 composes

1815

the frequent 1-itemset for the corpus. Construction of higher
order itemsets needs the cooperation of all processes. To
simplify the communications, processes are logically linked
as a ring so that each process need only communicates with

its neighbors. Assume process i hosts a frequent (k-1)-

itemset (1)iF k . First, (1)iF k is joined with itself,

after filtering those that do not meet the support requirement,
denote the remianing frequent itemsets by

((1) (1))i iF F k F k and put it into the frequent k-

itemset ()iF k . Then, communications begin so that

frequent (k-1)-itemsets in different process get the chance to

join. In the first round, process i sends frequent itemset

(1)iF k to the next process (1)i %p and receives

frequent itemset
(1) (1)i p %pF k from process

(1)i p %p .
(1) (1)i p %pF k is then joined with

(1)iF k , and the generated frequent itemsets are again put

into ()iF k . In the subsequent round of communication,

instead of the frequent (k-1)-itemset (1)iF k , process i

sends the frequent itemset that it receives in the previous
round to its next process, followed by the joining and

filtering manipulations. Such communications need 2p

rounds. If p is odd, the frequent k itemsets generated in

process i is

()() { ((1) (1)) 1 2}i i i p j %pF k F F k F k j p

and
1

() ()
P

ii
F k F k

 . The situation is a little more

complicated when p is even. The first 2 1p rounds of

communication is the same as p is odd, in the last round of

communication, there is a difference whether p can be

divided by 4 or not. If p can be divided by 4, then, in the

last round of communication, processes in

{ 0 2 1}i i p send data, whiles processes in

{ 1 2}i i p receive data. If p can not be divided by

4, then, in the last round of communication, only processes

with even number send data, whiles processes with odd
number receive data.

Repeating the above procedure, frequent k-itemsets are
generated from frequent (k-1)-itemsets, until no new frequent

itemset is generated or k reaches some prescribed number.

D. Filtration of candidate frequent itemsets

When two frequent frequent (k-1)-itemsets are joined, a
candidate frequent k-itemset is generated and the filter
procedure of HI-Apriori is applied to determines if it satisfies

the minimum support requirement with the aid of inverted
index hash table. Since each process keeps a copy of the
global inverted index hash table, these can be done locally
within each process. Note that the filter procedure does not
need to store candidate frequent itemsets, tremendous space
to store the candidate frequent itemsets are saved.

IV. EXPERIMENTS

The corpus for the experiments are taken from the
Sougou Lab [15]. Four datasets, labelled ds-1, ds-2, ds-3 and
ds-4, are drawn from the corpus by random sampling with
sample size 1,000, 10,000, 50,000 and 100,1000,
respectively. Each of the datasets contains, after
preprocessing, 15,710, 35,617, 108,496 and 135,527 distinct
terms respectively. Two experiments are designed to find out
how the distributed inverted index hash table and the parallel
generation of frequent itemsets could enhance the
performance of the PHI-Apriori algorithm. Each experiment
is carried out on the 4 datasets. By varying the numbers of
nodes and processes, both the vertical and the horizontal
scalability of PHI-Apriori are observed.

A. Experiment platform

The experiments are carried out on the Tianhe II
supercomputer in National Supercomputer Center in
Guangzhou. The computing nodes are configured as follows.

TABLE I. CONFIGURATION OF THE EXPERIMENT PLATFORM

Component Configuration

Processor 2 Intel Xeon E5-2692 v2 @

2.20GHz(64bit) 12 cores

Cache L1 cache of 32KB, L2 cache of 256KB,
L3 cache of 30720KB

Memory 64GB

Address space 46-bits physical address, 48-bits virtual

address

interconnection THExpress-2, the 160Gbps dedicated

high-speed network

According to the previous analysis, the PHI-Apriori
algorithm runs a little more efficiently when using odd
number processes than even number, moreover, running too
many process in a node results in drop down of performance.
Thus, each nodes runs 7 processes and each experiment is
deployed to odd number of nodes.

B. Experiments on the efficiency of building distributed
inverted index hash table

The first experiment is tested in 4 clusters with 1, 3, 5 and 7
nodes respectively. The time cost of constructing the global

inverted index hash table distributedly for each datasets and

on each clusters are summarized in Fig ..

1816

Figure 1. Performance of build distributed inverted index hash table.

Since the time cost for dataset ds-3 and ds-4 is by far
greater than that for ds-1 and ds-2, hence, two line charts are
drawn instead. In fact, this result indicates that when the
dataset is relatively small, constructing a distributed inverted
index hash table does not bring much advantages. The reason
is that, the time saved by reading and processing dataset by
multiple processes is counterbalanced by the time spent on
synchronization of the distributed inverted index hash table.

However, when the dataset grows to the scale of
510 , the

overhead of processing corpus dominates that of
synchronization, and the advantages brought by multiple
processes begin to appear.

C. Experiments on the efficiency of parallel generation of

frequent itemsets

This experiment is carried out for the same dataset and
with the same configurations as the first one. Experimental
results are collected in Fig. 2.

Performance of parallel generation of frequent itemsets.

TABLE II. BELOW SHOWS SOME MORE DETAILED RESULT FROM THE

EXPERIMENTS FOR DS-4.

THE SPEEDUPS OF PHI-APRIORI ON DS-4

of

nodes

of

processes

Time(s) Speedup Memory usage per

process(KB)

1 1 3469 1 1165422

1 7 528 6.57 853410

3 21 348 9.97 855496

5 35 290 11.96 893648

7 49 211 16.44 887896

Obviously, the speedup increases as the number of
processes increases. Furthermore, compared to corpus of
small size, the speedup gained for corpus of large size using
the same number of nodes and processes is bigger. The PHI-
Apriori algorithm has good vertical scalability in the sense
that, as the size of corpus grows, the speedup increases.

V. CONCLUSION

Mining assocaition rules in corpus is different from
transaction database. Based on previous work on the HI-
Apriori algorithm, this paper focus on extending HI-Apriori
to the high performance computing platforms. Parallelized
version for constructing the global inverted index hash table
and for generating frequent itemsets are presented. The PHI-
Apriori algorithm is then implemented via the standard MPI
library. Experimental results on several combination of
different corpus and different clusters demonstrate that PHI-
Apriori achieves satisfactory horizontal scalability as well as
vertical scalability.

ACKNOWLEDGMENT

This work is supported by National Supercomputer
Center in Guangzhou (No. 2013Y2-00036).

REFERENCES

[1] The 33rd Statistic Report on Internet Development in China.

http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201403/t2014030
5-46240.htm.

[2] Mills M. T., Bourbakis N. G., Graph-Based Methods for Natural

Language Processing and Understanding–A Survey and Analysis,
IEEE Transactions on Systems, Man and Cybernetics Part C:

Applications and Reviews :59–71, 2013.

[3] Muntean M., Cabulea L., Vslean H., A new text clustering method

based on Huffman encoding algorithm, Proceedings of 2014 IEEE
International Conference on Automation, Quality and Testing,

Robotics, Cluj-Napoca, pp. 1–6, 2014.

[4] Han J., Wang C., El-Kishky A., Bringing structure to text: Mining
phrases, entities, topics, and hierarchies, Proceedings of the 20th

ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, New York, pp. 1968–1968, 2014.

[5] Poelmans J., Ignatov D. I., Kuznetsov S. O., Dedene G., Formal
concept analysis in knowledge processing: A survey on applications,

Expert Systems with Applications :6538–6560, 2013.

[6] Poelmans J., Ignatov D. I., Kuznetsov S. O., Dedene G., Formal
concept analysis in knowledge processing: A survey on on models

and techniques, Expert Systems with Applications :6601–6623, 2013.

[7] El Oirrak A., Aboutajdine D., Combining BOW representation and

Appriori algorithm for text mining, 5th International Symposium on
I/V Communications and Mobile Networks, Rabat, pp. 1–4, 2010.

[8] Reddy G. S., Rajinikanth T.V., Rao A.A., A frequent term based text

clustering approach using novel similarity measure, Souvenir of the
2014 IEEE International Advance Computing Conference, Gurgaon,

pp. 495–499, 2014.

[9] Zhang Z., Zhu H., TOP-N most frequent item set mining algorithm

based on improved inverted list and set theory, Journal of
Computational Information Systems., :6261–6271, 2014.

[10] Mooney R. J., Roy L., Content-based book recommending using

learning for text categorization, Proceedings of the Fifth ACM
Conference on Digital Libraries, San Antonio, pp. 195–204, 2000.

[11] Babashzadeh A., Daoud M., Huang, J., Using semantic-based
association rule mining for improving clinical text retrieval, Lecture

Notes in Computer Science., :186–197, 2013.

[12] Agrawal R., Shafer J. C., Parallel Mining of Association Rules,
IEEE Transactions on Knowledge and Data Eng., :962–969, 1996.

[13] he Sougou Corpus. http://www.sogou.com/labs/.

1817

