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Abstract—With the rapid growth of the text processing 

technology, many knowledge discovery approaches have been 

introduced to handle large corpus. Data mining methods such 

as clustering and categorization, for example, have found wide 

applications in corpus processing. Recently, association rule 
mining methods also have a place in this field. However, due to 

the huge amount of "items" contained in corpus, the 

traditional association rule mining algorithms encounter great 

effectiveness and efficiency challenges. In this paper, a new 

parallel association rule mining algorithm especially 

customized for corpus is developed and implemented using the 

MPI programming interface. The main ideas are to adopt a 

distributed inverted index hash table, and to design a 
communication scheme based on "chessboard decomposition" 

to accelerate the generation of candidate itemsets. Experiments 

are are devised and conducted on the Tianhe-II 

Supercomputer of Guangzhou National Super Computing 

Center. The experimental results demonstrate that the new 

algorithm has achieved desirable performance, with a speedup 

rate of 16 when using 49 processes altogether. 
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I.  INTRODUCTION 

Human society is experiencing the age of information 
explosion, data from various fields is accumulated at an 
amazing rate. Internet in China, for example, has become a 
huge warehouse of data [1]. Web pages are mainly 
composed of text, multimedia information and hyper-links 
among them, with text being the largest part. Since text is 
usually semi-structured or unstructured, how to deal with 
huge amounts of unstructured data presents a major 
challenge in the field of data mining and becomes a hot topic, 
attracting much attentions from either academic or industrial 
community. Most research work in corpus processing 
utilizes some sort of machine learning approaches. Graph-
based methods, for example, has been used for natural 
language processing [2]. The Huffman encoding algorithm 
finds its role in improving accuracy of text clustering [3]. 
Methods for mining structural information from text corpus 
have been surveyed in [4]. Concept based methods such as 
formal concept analysis also contribute to knowledge 
processing of corpus [5,6]. 

Recently, association rules begin to play a role in this 
field [7,8,9]. A content-based book recommendation system 
has been developed by mining associations among Amazon 
books[10]. In [11], retrieval of clinical text has been 
improved using semantic-based association rule mining. 
However, the most prominent characteristics of text 
document is that it might contains a large amount of words, 
giving rise to huge number of frequent itemsets. Thus, 
traditional algorithms such as Apriori and FP-Growth could 
not scale well on text corpus. 

Nowadays, high performance multi-core computer 
clusters together with supercomputers begin to provide 
powerful computing service for research institutes, 
organizations and enterprizes as well. Parallelization 
solutions are more and more popular and become the trend 
of the big data era. As early as in 1996, Agrawal has 
proposed a parallel Apriori based association rule mining 
algorithm [12], which was then improved by various 
researchers. Nevertheless, due to the sparsity of terms in 
corpus and hence much fewer shared prefixes, FP-Growth 
algorithm tends to generate an FP-Tree with a large number 
of nodes and branches, which would greatly impact the 
efficiency. To overcome this difficulty, an HI-Apriori 
algorithm has been presented in [13], which adopts an 
inverted index hash table instead of an FP-Tree to hold the 
corpus. On one hand, HI-Apriori retains the advantage of FP-
Growth, avoiding generating frequent itemsets and scanning 
the dataset multiple times. On the other hand, it is much 
efficient than FP-Growth when handling corpus. 

In this paper, the HI-Apriori algorithm is extended to a 
parallelization version, called PHI-Apriori. First, the HI-
Apriori algorithm is analyzed to identify the computational 
extensive area. Then, parallelization are designed w.r.t the 
hot spot, using the "chessboard decomposition" strategy. The 
PHI-Apriori algorithm is implemented via the MPI interface 
and finally, experiments are carried out in the Guangzhou 
National Super Computing Center. Numerical results show 
that PHI-Apriori achieves satisfactory speedup and scales 
well for corpus of various size and computing clusters of 
various configurations. 
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II. ANALYSIS OF HI-APRIORI 

The main idea of HI-Apriori is to introduce an inverted 
index hash table which facilitates generation of frequent 
itemsets. 

A. Preprocess of the corpus 

Mining text usually requires some sort of preprocessing 
so that the remaining text only contains necessary 
information. Web pages crawled from the internet, for 
example, need to get rid of the tags, hyperlinks, multimedia, 
advertisements etc, with only pure text left. For some 
languages like Chinese, an additional step word 
segmentation must be carried out to tokenize the sentences. 
The HI-Apriori resorts to third-party libraries for this job and 
focuses on generation of frequent itemsets. Moreover, modal 
particle, as well as stop words, are filtered, leaving only 
meaningful terms.  

B. Inverted index hash table 

Inverted index hash table is an important tool in 
document processing, and plays an essential role in the field 
of information retrieval. In [13], it is found that inverted 
index hash table can also be used to mining association rules 
in corpus. In fact, two kinds of hash tables are designed in 
HI-Apriori: one for generation of candidate frequent itemsets, 
one for filter of candidate frequent itemsets. Experiments in 
[13] has shown that while FP-Tree is suitable for mining 
traditional transaction dataset, inverted index hash table is 
more efficient for mining corpus.  

For distributed computing platforms, the inverted index 
hash table can be constructed parallelly. Each process will 
build an inverted index hash table for the allocated portion of 
the corpus, and for each term, its indexed list might appear in 
multiple processes, hence, these local inverted index hash 
tables need to merge into a global inverted index hash table. 

C. Generation of frequent itemsets 

Like the Apriori algorithms, the HI-Apriori generates 
frequent k-itemsets from frequent (k-1)-itemsets by the join 
manipulation. Since the number of combinations grows by 
square, the join manipulation consumes most of the 
computation time and is the hot spot, thus, parallelization is 
utilized to address this issue.  

Suppose the frequent (k-1)-itemsets are allocated to a 
group of processes, then, besides making join with itself, the 
itemsets within each process need to join with that of other 
processes. To do so, processes need to exchange itemsets 
among them using some communication scheme. 

III. DESIGN OF PHI-APRIORI 

A. Partition of the corpus 

Assume that there are n  nodes and p  processes. 

Denote by D  the corpus, by D   the number of documents 

contained in D , and by M  the total size of D . Suppose 

process i  is assigned a subset iS  of D  that contains ir  

documents, 1i p  , then,  
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such that  

( ) 1im S M p i p      
 

where ( )im S  is the size of 
iS  and 0   is a sufficiently 

small number. However, Eq. (1)-(3) is a NP-Complete 

problem which requires heavy computational overhead. 

Thus, the MULTIFIT algorithm [14] for the dual packing 
problem is adopted here to find a sub-optimal solution. The 

tasks are then allocated to the processes via MPI_Scatter.  

B. Distributed inverted index hash table 

After the assignment of workload, each process 
constructs a local inverted index hash table, as illustrated by 
the first picture in Figure1. These index hash tables should 
be merged to a global inverted index hash table for later use. 
To achieve this, PHI-Apriori collects the bucket split 
information of local inverted index hash table of each 
process via MPI_Gather, determines the maximum number 
of split, and broadcast it to all processes via MPI_Bcast. 
Each process then splits completely its local inverted index 
hash table according to this number so that all the local 
inverted index hash tables have the same entries and buckets, 
and there is only one entry pointing to each bucket. Notice 
that, a complete split might results in some empty buckets 
which cost few spaces and have little impact on performance. 

Since local inverted index hash tables are split 
completely, it is straightforward to merge: just merge the 
buckets under the same entry. There are two ways to do so. 
One is that the main process collects all the inverted index 
hash tables and then merges in the main process. The 
alternative is that each process will be responsible for the 
merge of some buckets, sending out buckets of other 
processes’ duty and receiving buckets of its own duty via 
MPI_Alltotal. Then, each process merges buckets. Finally, 
each process sends out its merged buckets and receives 
others merged buckets via MPI_Alltotal, and finally, all 
processes obtain a copy of the global inverted index hash 
table. 

C. Generation of candidate frequent itemsets 

Generation of frequent itemsets begins with frequent 1-

itemsets. In the previous step, when a process i  has merged 

the allocated buckets, it is able to generates a frequent 1-

itemset (1)iF , whose union 
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the frequent 1-itemset for the corpus. Construction of higher 
order itemsets needs the cooperation of all processes. To 
simplify the communications, processes are logically linked 
as a ring so that each process need only communicates with 

its neighbors. Assume process i  hosts a frequent (k-1)-

itemset ( 1)iF k  . First, ( 1)iF k   is joined with itself, 

after filtering those that do not meet the support requirement, 
denote the remianing frequent itemsets by 

( ( 1) ( 1))i iF F k F k    and put it into the frequent k-

itemset ( )iF k . Then, communications begin so that 

frequent (k-1)-itemsets in different process get the chance to 

join. In the first round, process i  sends frequent itemset 

( 1)iF k   to the next process ( 1)i %p  and receives 

frequent itemset 
( 1) ( 1)i p %pF k    from process 

( 1)i p %p  . 
( 1) ( 1)i p %pF k    is then joined with 

( 1)iF k  , and the generated frequent itemsets are again put 

into ( )iF k . In the subsequent round of communication, 

instead of the frequent (k-1)-itemset ( 1)iF k  , process i  

sends the frequent itemset that it receives in the previous 
round to its next process, followed by the joining and 

filtering manipulations. Such communications need 2p   

rounds. If p  is odd, the frequent k  itemsets generated in 

process i  is  



( )( ) { ( ( 1) ( 1)) 1 2}i i i p j %pF k F F k F k j p        

 

and 
1

( ) ( )
P
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 . The situation is a little more 

complicated when p  is even. The first 2 1p    rounds of 

communication is the same as p  is odd, in the last round of 

communication, there is a difference whether p  can be 

divided by 4 or not. If p  can be divided by 4, then, in the 

last round of communication, processes in 

{ 0 2 1}i i p      send data, whiles processes in 

{ 1 2}i i p     receive data. If p  can not be divided by 

4, then, in the last round of communication, only processes 

with even number send data, whiles processes with odd 
number receive data.  

Repeating the above procedure, frequent k-itemsets are 
generated from frequent (k-1)-itemsets, until no new frequent 

itemset is generated or k  reaches some prescribed number.  

D. Filtration of candidate frequent itemsets 

When two frequent frequent (k-1)-itemsets are joined, a 
candidate frequent k-itemset is generated and the filter 
procedure of HI-Apriori is applied to determines if it satisfies 

the minimum support requirement with the aid of inverted 
index hash table. Since each process keeps a copy of the 
global inverted index hash table, these can be done locally 
within each process. Note that the filter procedure does not 
need to store candidate frequent itemsets, tremendous space 
to store the candidate frequent itemsets are saved. 

IV. EXPERIMENTS 

The corpus for the experiments are taken from the 
Sougou Lab [15]. Four datasets, labelled ds-1, ds-2, ds-3 and 
ds-4, are drawn from the corpus by random sampling with 
sample size 1,000, 10,000, 50,000 and 100,1000, 
respectively. Each of the datasets contains, after 
preprocessing, 15,710, 35,617, 108,496 and 135,527 distinct 
terms respectively. Two experiments are designed to find out 
how the distributed inverted index hash table and the parallel 
generation of frequent itemsets could enhance the 
performance of the PHI-Apriori algorithm. Each experiment 
is carried out on the 4 datasets. By varying the numbers of 
nodes and processes, both the vertical and the horizontal 
scalability of PHI-Apriori are observed. 

A. Experiment platform 

The experiments are carried out on the Tianhe II 
supercomputer in National Supercomputer Center in 
Guangzhou. The computing nodes are configured as follows. 

TABLE I.  CONFIGURATION OF THE EXPERIMENT PLATFORM 

Component  Configuration   

Processor  2  Intel Xeon E5-2692 v2 @ 

2.20GHz(64bit) 12 cores  

Cache  L1 cache of 32KB, L2 cache of 256KB, 
L3 cache of 30720KB  

Memory  64GB  

Address space  46-bits physical address, 48-bits virtual 

address  

interconnection  THExpress-2, the 160Gbps dedicated 

high-speed network  

According to the previous analysis, the PHI-Apriori 
algorithm runs a little more efficiently when using odd 
number processes than even number, moreover, running too 
many process in a node results in drop down of performance. 
Thus, each nodes runs 7 processes and each experiment is 
deployed to odd number of nodes. 

B. Experiments on the efficiency of building distributed 
inverted index hash table 

The first experiment is tested in 4 clusters with 1, 3, 5 and 7 
nodes respectively. The time cost of constructing the global 

inverted index hash table distributedly for each datasets and 

on each clusters are summarized in Fig  .. 
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Figure 1.  Performance of build distributed inverted index hash table. 

Since the time cost for dataset ds-3 and ds-4 is by far 
greater than that for ds-1 and ds-2, hence, two line charts are 
drawn instead. In fact, this result indicates that when the 
dataset is relatively small, constructing a distributed inverted 
index hash table does not bring much advantages. The reason 
is that, the time saved by reading and processing dataset by 
multiple processes is counterbalanced by the time spent on 
synchronization of the distributed inverted index hash table. 

However, when the dataset grows to the scale of 
510 , the 

overhead of processing corpus dominates that of 
synchronization, and the advantages brought by multiple 
processes begin to appear. 

C. Experiments on the efficiency of parallel generation of 

frequent itemsets 

This experiment is carried out for the same dataset and 
with the same configurations as the first one. Experimental 
results are collected in Fig. 2. 

 
Performance of parallel generation of frequent itemsets. 

TABLE II.  BELOW SHOWS SOME MORE DETAILED RESULT FROM THE 

EXPERIMENTS FOR DS-4. 

THE SPEEDUPS OF PHI-APRIORI ON DS-4 

# of 

nodes  

# of 

processes  

Time(s)  Speedup  Memory usage per 

process(KB) 

1  1  3469  1  1165422   

1  7  528  6.57  853410   

3  21  348  9.97  855496   

5  35  290  11.96  893648   

7  49  211  16.44  887896   

Obviously, the speedup increases as the number of 
processes increases. Furthermore, compared to corpus of 
small size, the speedup gained for corpus of large size using 
the same number of nodes and processes is bigger. The PHI-
Apriori algorithm has good vertical scalability in the sense 
that, as the size of corpus grows, the speedup increases. 

V. CONCLUSION 

Mining assocaition rules in corpus is different from 
transaction database. Based on previous work on the HI-
Apriori algorithm, this paper focus on extending HI-Apriori 
to the high performance computing platforms. Parallelized 
version for constructing the global inverted index hash table 
and for generating frequent itemsets are presented. The PHI-
Apriori algorithm is then implemented via the standard MPI 
library. Experimental results on several combination of 
different corpus and different clusters demonstrate that PHI-
Apriori achieves satisfactory horizontal scalability as well as 
vertical scalability. 
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