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Abstract—In order to solve physical problems, we must 
establish mathematical models for the problems. 

Mathematical models often are differential equations 

relating an unknown function and one or more of its 

derivatives. In this paper, in order to solve high order 

differential equations, we first proved the expression for n 

repeated definite integrals by mathematical induction, 

Integration by parts and binomial formula. Then we 

obtained the solution of a class of high order differential 
equations by integral technique and the formula for n 

repeated definite integrals. Our results can be used to study 

the properties of high order differential equations, and then 

our results can be used to investigate physical or “real life” 

problems. 
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I.  INTRODUCTION 

In order to solve physical problems, we must establish 
mathematical models for the problems. Mathematical 
models often are differential equations relating an 
unknown function and one or more of its derivatives. Wide 
applications of differential equations have attracted great 
interests of many mathematicians. Some mathematicians 
investigated existence of solutions for differential 
equations in [1-6]. Some mathematicians studied the 
solutions of high order differential equations and the 
theory on differential equations in [7-11].  

II. MAIN RESULTS 

In this section, we use the following lemmas to prove 
our main results. 

Lemma 1. (see [12]) Suppose that )(tf  is a 

continuous function on ),[ a .Then the function 
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is a solution of higher order differential equation 
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Proof. For the reader’s convenience, we prove this 
Lemma by induction. Firstly, we consider the case of 

1n . The solution of differential equation (2) is 
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So (1) is true for 1n . Letting this be our basis step, 

suppose that (1) is true up to some 1k , i.e. the solution 

of differential equation (2) is 
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If 1 kn , then the induction hypothesis implies 

that the solution of differential equation (2) is 
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We consider the integration 
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   When 12 k , we have 
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   When 22 k , we have 
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  When 32 k , we get 

 
t

a

s

a
dsdf

ss
11

3

1

2

)(
!3

)(

2



 





s

a

t

adf
ss

|)(
!3

)(

!3
11

3

1

3




 

   



t

a

s

a
dsdf

ss
11

2

1

3

)(
!2

)(

!3



 





t

a
dssf

stt
)(

!3

)(

!3

33

        





s

a

t

adf
ss

|)(
!2

)(

!4
[ 11

2

1

4




   

])()(
!4

111

4

dsdfs
s s

a

t

a   








s

a

t

a

t

a
df

ss
dssf

stt
|)(

!2

)(

!4
{)(

!3

)(

!3
11

2

1

433




 

  
t

a

s

a

s

a

t

a dsdf
s

dfs
s

]})(
!5

|)()(
!5

[ 11

5

111

5










t

a

t

a
dssf

stt
dssf

stt
)(

!2

)(

!4
{)(

!3

)(

!3

2433

 

 
t

a

t

a

t

a
dssf

s
dssf

t
dsfst

t
)]})(

!6
)(

!6
()()(

!5
[

66

1

5



.)())(
!2!4

!6
)(

!3!3

!6
(

!6

1 2433

 
t

a
dssfsttstt           

.)())(
!1!5

!6
(

!6

1 665

 
t

a
dssfststt           (9) 

  By the same procedure as above, we get 
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Taking into account (5) and (10), we obtain 
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Therefore, by induction, (17) is true for all 1n . 

Theorem 1.  Suppose that )(tf  is a continuous 

function on ),[ a , and 0)( tp  is an nth continuous 

differentiable function on ),[ a . Then the function 
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(12) 
is a solutions of  higher order differential equation 
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Proof. Carrying out integrations on both sides of (13) 

n  times, using (1), we obtain 
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Dividing both sides of (14) by )(tp , we have 
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From (15), we get 
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(16) is a solution of higher order differential equation (13). 

Theorem 2.  Suppose that
21,cc  are positive constants. 

Then the function 
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is a solutions of  higher order differential equation 
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Proof.  By Theorem 1, we see that the function 
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is a solutions of  higher order differential equation 
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From (14), we have 
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Let )( atxas  , then )( asatst  . 

From (21), we have  
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III. CONCLUSIONS 

In this paper, firstly, we proved the function 
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be a solution of higher order differential equation 
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Then we proved the function 
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be a solutions of higher order differential equation 
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