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Abstract—Ship damage rates analysis is a important in 

shipbuilding. Poisson regression is a regression model 

for analyzing the dependent variable of count data. Ship 

damage rates forecast model based on Poisson 

regression is proposed. Using SPSS Clementine data 
mining tool, the ship data is analysis by Poisson 

regression. Some interpretations are made based on the 

parameter estimates. 
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I. INTRODUCTION  

Ship damage stability is a long-lasting puzzle in 
shipbuilding field, which involves many complex 

technical issues as rolling, flooding and capsizing of 

damaged ship in random waves[1-5].There are many 

phenomena where the dependent variable is the count 
type (which can take on nonnegative inter values: 

{0,1,2,…}), such as the number of restatement of 

financial statements during a period, or the number of 

patents received by a firm per year. The underlying 
variable in each case, the outcome variable, is 

discrete. Note that these numbers are actual counts, 

which are different form the ordinal numbers. 

Sometimes count data can also refer to rare, or 

infrequent, occurrences such as failing n tests. Just 

as the Bernoulli distribution was chosen to model the 

yes/no decision, the probability model distribution 

that is specifically suited for count data is the Poisson 

probability distribution. A generalized linear model 
can be used to fit a Poisson regression for the analysis 

of count data[6-10]. For example, a dataset presented 

and analyzed elsewhere concerns damage to cargo 

ships caused by waves. The incident counts can be 
modeled as occurring at a Poisson rate given the 

values of the predictors, and the resulting model can 

help you determine which ship types are most prone 

to damage. 
 

II. THE POISSON DISTRIBUTION AND POISSON 

REGRESSION 

In statistics, Poisson regression is a form of 
regression analysis used to model count data and 

contingency tables[1]. The basic distribution for 

describing counts is the Poisson distribution, which 

arises in connection with the Poisson process. 

A Poisson distributed random variable Y with 

parameter 0  is defined for all nonnegative 

integer numbers 0, 1, 2, . . . . 

The density of a Poisson distribution is 
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Mean and variance are 
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Hence, for a Poisson distributed variable the mean 

and variance are equal. 
Notice an interesting feature of the Poisson 

distribution: Its variance is the same as its mean value. 

The parameter   on the Poisson regression model 

may be written as a log-linear model (Lawless J. 

E. ,1984; Hilbe 2007): 
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It equivalents to (because exp() is always positive)) 
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where the 
T

kiiii xxxX ),,,( 21   are some of the 

variables that might affect the mean value. Then, the 
probability that y equals the value h, conditional on 

iX , is: 
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   The parameters 
T

k ),,,( 10    can be 

estimated by the maximum likelihood estimated 
method: 
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Thus,  
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Notice that the parameters 
T

k ),,,( 10    only appear in the first two 

terms of each term in the summation. Therefore, 
given that we are only interested in finding the best 

value for 
T

k ),,,( 10    we may drop the 
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    This equation has no closed-form solution. 

However, The negative log-likelhood, H , is a 
convex function, and so standard convex optimization 

or gradient descent techniques can be applied to find 

the optimal value of 
T

k ),,,( 10   . 

III. USING POISSON REGRESSION TO ANALYZE 

SHIP DAMAGE RATES 

 

The SHIP data shown in Table 1 represent 

damage caused by waves to the forward section of 
certain cargo-carrying vessels. The purpose of the 

investigation was to set standards for future hull 

construction. In order to do so, the investigators 

needed to know the risk of damage associated with 

five ship types (TYPE), year of construction 

(YEAR), and period of operation (PERIOD). 
These three variables are the classification variables. 

MONTHS is the aggregate number of months in 

service and is an explanatory variable. Y is the 
response variable and represents the number of 

damage incidents.  

In order to do so, the investigators needed to know 
the risk of damage associated with 

• TYPE: Ship type: A–E, 

• YEAR: Year of construction: 1960-64, 1965-69, 

1970-74, 1975-79, 
• PERIOD: Period of operation: 1960-74, 1975-79, 

• MONTHS: The aggregate number of months in 

service. 

Y is the response variable and represents the 
number of damage incidents. The numeric data of 

ship is shown in table 2. 

 

TABLE I.   SHIP DATA 

 Ship 

type 

Year of 

construction 

Period of 

operation 

Logarithm of 

aggregate 

months of 
service 

Number 

of damage 

incidents 

1 A 1960-64 1960-74 4.844 0 

2 A 1960-64 1975-79 4.143 0 

3 A 1965-69 1960-74 6.999 3 
4 A 1965-69 1975-79 6.999 4 

5 A 1970-74 1960-74 7.321 6 

6 A 1970-74 1975-79 8.118 18 

7 A 1975-79 1960-74   
8 A 1975-79 1975-79 7.716 11 

9 B 1960-64 1960-74 10.712 39 

10 B 1960-64 1975-79 9.751 29 

11 B 1965-69 1960-74 10.261 58 
12 B 1965-69 1975-79 9.922 53 

13 B 1970-74 1960-74 8.863 12 

14 B 1970-74 1975-79 9.480 44 

15 B 1975-79 1960-74   
16 B 1975-79 1975-79 8.870 18 

17 C 1960-64 1960-74 7.072 1 

18 C 1960-64 1975-79 6.314 1 

19 C 1965-69 1960-74 6.661 0 
20 C 1965-69 1975-79 6.516 1 

21 C 1970-74 1960-74 6.663 6 

22 C 1970-74 1975-79 7.575 2 

23 C 1975-79 1960-74   
24 C 1975-79 1975-79 5.613 1 

25 D 1960-64 1960-74 5.525 0 

26 D 1960-64 1975-79 4.654 0 
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27 D 1965-69 1960-74 5.663 0 

28 D 1965-69 1975-79 5.257 0 

29 D 1970-74 1960-74 5.855 2 

30 D 1970-74 1975-79 7.097 11 
31 D 1975-79 1960-74   

32 D 1975-79 1975-79 7.626 4 

33 E 1960-64 1960-74 3.807 0 

34 E 1960-64 1975-79   
35 E 1965-69 1960-74 6.671 7 

36 E 1965-69 1975-79 6.080 7 

37 E 1970-74 1960-74 7.054 5 

38 E 1970-74 1975-79 7.678 12 
39 E 1975-79 1960-74   

40 E 1975-79 1975-79 6.295 1 

TABLE II.   SHIP NUMERIC DATA 

 Type Construction Operation Log_months_service Damage_incidents 

1 1 60 60 4.844 0 

2 1 60 75 4.143 0 
3 1 65 60 6.999 3 

4 1 65 75 6.999 4 

5 1 70 60 7.321 6 

6 1 70 75 8.118 18 
7 1 75 60   

8 1 75 75 7.716 11 

9 2 60 60 10.712 39 

10 2 60 75 9.751 29 
11 2 65 60 10.261 58 

12 2 65 75 9.922 53 

13 2 70 60 8.863 12 

14 2 70 75 9.480 44 
15 2 75 60   

16 2 75 75 8.870 18 

17 3 60 60 7.072 1 
18 3 60 75 6.314 1 

19 3 65 60 6.661 0 

20 3 65 75 6.516 1 

21 3 70 60 6.663 6 
22 3 70 75 7.575 2 

23 3 75 60   

24 3 75 75 5.613 1 

25 4 60 60 5.525 0 
26 4 60 75 4.654 0 

27 4 65 60 5.663 0 

28 4 65 75 5.257 0 

29 4 70 60 5.855 2 
30 4 70 75 7.097 11 

31 4 75 60   

32 4 75 75 7.626 4 

33 5 60 60 3.807 0 
34 5 60 75   

35 5 65 60 6.671 7 

36 5 65 75 6.080 7 

37 5 70 60 7.054 5 
38 5 70 75 7.678 12 

39 5 75 60   

40 5 75 75 6.295 1 

 

The data provides information on the number and 

exposure for ship damage incidents, where the 

exposure was expressed in terms of aggregate number 
of month service. The risk of ship damage incidents 

was associated with three rating factors: ship type, 

year of construction and period of operation. The 

fitting procedure only involves thirty-four data points 

because six of the rating classes have zero exposures.  
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Clementine is the SPSS enterprise-strength data 
mining workbench [11]. Clementine helps 

organizations to improve customer and citizen 

relationships through an in-depth understanding of 

data. Organizations use the insight gained from 
Clementine to retain profitable customers, identify 

cross-selling opportunities, attract new customers, 

detect fraud, reduce risk, and improve government 

service delivery. 
Clementine’s visual interface invites users to 

apply their specific business expertise, which leads to 

more powerful predictive models and shortens time-
to-solution. Clementine offers many modeling 

techniques, such as prediction, classification, 

segmentation, and association detection algorithms. 

Once models are created, Clementine Solution 
Publisher enables their delivery enterprise-wide to 

decision makers or to a database. 

The poisson regression modeling is shown on Figure 

1. The results of parameter estimates are shown in 
Table 3. 

 
Figure 1.   Sample stream to analyze damage rates 

TABLE III. 

 
PARAMETER ESTIMATES

 
Parameter

 
B

 
Std. Error

 
95% Wald 

Confidence Interval
 

Wald Chi-

Square
 

df
 

Sig.
 

intercept
 

-6.406
 

0.2828
 

[-6.960,-5.852]
 

513.238
 

1
 

0.000
 Type=5

 
0.326

 
0.3067

 
[-0.276,0.927]

 
1.127

 
1

 
0.288

 Type=4
 

-0.076
 

0.3779
 

[-0.817,0.665]
 

0.040
 

1
 

0.841
 Type=3

 
-0.687

 
0.4279

 
[-1.526,0.151]

 
2.581

 
1

 
0.108

 Type=2
 

-0.543
 

0.2309
 

[-0.996,-0.091]
 

5.536
 

1
 

0.019
 Type=1

 
0

      Construction=75
 

0.453
 

0.3032
 

[-0.141,1.048]
 

2.236
 

1
 

0.135
 Construction=70

 
0.818

 
0.2208

 
[0.386,1.251]

 
13.743

 
1

 
0.000

 Construction=65
 

0.697
 

0.1946
 

[0.316,1.079]
 

12.835
 

1
 

0.000
 Construction=60

 
0

      Operation=75
 

0.384
 

0.1538
 

[0.083,0.686]
 

6.249
 

1
 

0.12
 Operation=60

 
0

      Scale
 

1.691
      

 The parameter estimates table summarizes the effect 
of each predictor. While interpretation of the coefficients 

in this model is difficult because of the nature
 
of the link 

function, the signs of the coefficients for covariates and 

relative values of the coefficients for factor levels can give 
important insights into the effects of the predictors in the 

model.
 For covariates, positive (negative) coefficients 

indicate positive (inverse) relationships between 

predictors and outcome. An increasing value of a 

covariate with a positive coefficient corresponds to an 
increasing rate of damage incidents.

 For factors, a factor level with a greater coefficient 

indicates greater incidence of damage. The sign of a 

coefficient for a factor level is dependent upon that factor 
level’s effect relative to the reference category.

 we can make the following interpretations based on 

the parameter estimates:
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(1) Ship type B [type=2] has a statistically 

significantly (p value of 0.019) lower damage rate 
(estimated coefficient of –0.543) than type A [type=1], the 

reference category. Type C [type=3] actually has an 

estimated parameter lower than B, but the variability in 

C’s estimate clouds the effect. See the estimated marginal 
means for all relations between factor levels. 

(2) Ships constructed between 1965–69 

[construction=65] and 1970–74 [construction=70] 

have statistically significantly (p values <0.001) higher 
damage rates (estimated coefficients of 0.697 and 0.818, 

respectively) than those built between 1960–64 

[construction=60], the reference category. See the 

estimated marginal means for all relations between factor 
levels. 

(3) Ships in operation between 1975–79 [operation=75] 

have statistically significantly (p value of 0.012) higher 

damage rates (estimated coefficient of 0.384) than those in 
operation between 1960–1974 [operation=60]. 

IV. CONCLUSIONS 

In actuarial literature, researchers suggested various 

statistical procedures to estimate the parameters in claim 
count or frequency model. In particular, the Poisson 

regression model, which is also known as the Generalized 

Linear Model (GLM) with Poisson error structure, has 

been widely used in the recent years. This paper suggests 
the Poisson regression models as alternatives for handling 

ship data. Modeling the raw cell counts can be misleading 

in this situation because the Aggregate months of service 

varies by ship type. Variables like this that measure the 
amount of “exposure” to risk are handled within the 

generalized linear model as offset variables. Moreover, a 

Poisson regression assumes that the log of the dependent 

variable is linear in the predictors. Thus, to use 
generalized linear models to fit a Poisson regression to the 

accident rates. 
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