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Abstract—In the mathematical field of numerical analysis, 

interpolation is a method of constructing new data points 

within the range of a discrete set of known data points. 
Based on analysis of basic polynomial interpolation, the 

equidistant polynomial interpolation problem is studied. 

Simple divided difference is given and it is proved by 

mathematical induction. The computation is smaller than the 

traditional method. At last, this calculation method is 

illustrated through an example. 
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I. INTRODUCTION  

In numerical analysis, polynomial interpolation is the 

interpolation of a given data set by a polynomial: given 

some points, find a polynomial which goes exactly 
through these points[1-3]. Polynomials [4-10] can be used 

to approximate more complicated curves, for example, the 

shapes of letters in typography, given a few points. A 

relevant application is the evaluation of the natural 
logarithm and trigonometric functions: pick a few known 

data points, create a lookup table, and interpolate between 

those data points. This results in significantly faster 

computations. Polynomial interpolation also forms the 
basis for algorithms in numerical quadrature and 

numerical ordinary differential equations. Most textbooks 

only discuss the general case (non-equidistant) 

polynomial interpolation problem. It has three methods[1-
3], such as linear system method, Lagrange’s Interpolation 

Formula and Newton’s Interpolation Formula for 

determining the polynomial interpolation. In practical, the 

equidistant interpolation often occurs. Since the 
equidistant interpolation is a special kind of interpolation, 

so the solution should be more simple. The equidistant 

polynomial interpolation problem is studied in this paper. 

II. GENERAL METHODS TO SOLVE POLYNOMIAL 

INTERPOLATION 

A. Linear System Method 

Definition: Given a set of 1n  data points ),( ii yx  

where no two xi are the same, one is looking for a 

polynomial )(xPn  of degree at most n  with the property 

iin yxP )(
,

ni ,,2,1,0  . 

Suppose that the interpolation polynomial is in the form 

n

nn xaxaaxP  10)(                  (1) 

The statement that p interpolates the data points 

means that iin yxP )( ， ni ,,2,1,0   

If we substitute equation (1) in here, we get a system 

of linear equations in the coefficients 
ka . 
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We have to solve this system for 
ka  to construct the 

interpolation )(xPn . 

B. Lagrange’s Interpolation Formula  

In numerical analysis, Lagrange polynomials are used 

for polynomial interpolation. the interpolation polynomial 

in the Lagrange form is a linear combination 
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C. Newton’s Interpolation Formula 

The divided differences for a function )(xf  are 

defined as follows:  
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The recursive rule for constructing higher-order 
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divided differences is 
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The divided difference formulae are used to construct the 

divided difference table 1. 

TABLE I.   DIVIDED-DIFFERENCE TABLE 
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The Newton polynomial of degree n  is  
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III. EQUIDISTANT INTERPOLATION 

A. Equidistant Lagrange’s Interpolation Formula  

The equidistant polynomial interpolation is that the 

interpolation nodes ix  are equal intervals. That is 

hxx ii  1 ( ni ,,2,1  ). 
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B. Equidistant Newton’s Interpolation Formula  

 
The first divided differences are calculated as follows: 
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The second divided differences are calculated as 
follows: 
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The third divided differences are calculated as follows: 
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The kth divided difference is calculated as follows: 
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Theorem: When nxxx ,,, 10   are equal intervals. That 

is hxx ii  1 ( ni ,,2,1  ). then 
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Proof: (Proof by Mathematical Induction) 

When 1n ,  
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Hence, the formula is true. 

Assume that the formula is true for kn  , 
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Hence, formula is true for 1 kn . The formula, 

therefore, is true for every divided difference. 
Because the interpolating polynomial is formed as 

above using the topmost entries of divided-difference 

table in each column as coefficients, we only calculate the 

topmost entries of divided-difference table, needn’t 
calculate entire divided-difference table. So the 

computation is smaller than the traditional method. 

IV. NUMERICAL EXAMPLE 

Find interpolating polynomials )(4 xP  based on the 

five points (-4,30),(-2,-42),(0,30),(2,6) and (4,30).  

This is an equidistant interpolation problem. The equal 

width h  is 2h . 

(1) Equidistant Lagrange’s Interpolation  
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)(4 xP  is shown in figure 1. 

 

(2) Equidistant Newton’s Interpolation  
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Figure 1.   Graph of )(4 xP  
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