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Abstract. In this paper, we use the large deviation theorem and avalanche principle developed by 
Goldstein and Schlag in [3], to prove that the Lyapunov exponent for analytic quasi-periodic Jacobi 
operators with weak Liouville frequency is log-Holder continuous. 

1. Introduction 

In this paper we study the continuity of the Lyapunov exponent associated with 1-D 
quasi-periodic Jacobi operators on 𝑙𝑙2(ℤ) 
(1.1)  

  �𝐻𝐻𝑥𝑥,𝜔𝜔𝜙𝜙�(𝑛𝑛) = −𝑏𝑏(𝑥𝑥 + (𝑛𝑛 + 1)𝜔𝜔)𝜙𝜙(𝑛𝑛 + 1) − 𝑏𝑏(𝑥𝑥 + 𝑛𝑛𝜔𝜔)𝜙𝜙(𝑛𝑛 − 1) + 𝑎𝑎(𝑥𝑥 + 𝑛𝑛𝜔𝜔)𝜙𝜙(𝑛𝑛), n ∈ ℤ, 

where x ∈ 𝕋𝕋, a(x),b(x) are analytic on 𝕋𝕋 and b(x) is not identically zero. ω is called frequency, 
which is usually set to be irrational number. Set 

A(x, E,ω) = 1
𝑏𝑏(𝑥𝑥+𝜔𝜔) �

𝑎𝑎(𝑥𝑥) − 𝐸𝐸 −𝑏𝑏(𝑥𝑥)
𝑏𝑏(𝑥𝑥 + 𝜔𝜔) 0 �. 

𝑀𝑀𝑁𝑁(𝑥𝑥,𝐸𝐸,𝜔𝜔) = 𝑀𝑀[1,𝑁𝑁](𝑥𝑥,𝐸𝐸,𝜔𝜔) = 𝐴𝐴(𝑥𝑥 + (𝑁𝑁 − 1)𝜔𝜔,𝐸𝐸,𝜔𝜔)𝐴𝐴(𝑥𝑥 + (𝑁𝑁 − 2)𝜔𝜔,𝐸𝐸,𝜔𝜔…𝐴𝐴(𝑥𝑥,𝐸𝐸,𝜔𝜔), 
Define the analytic matrix 

 𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥,𝐸𝐸,𝜔𝜔) = 𝑀𝑀[1,𝑁𝑁]

𝑎𝑎 (𝑥𝑥,𝐸𝐸,𝜔𝜔) ≔ 𝐴𝐴𝑎𝑎(𝑥𝑥 + (𝑁𝑁 − 1)𝜔𝜔,𝐸𝐸,𝜔𝜔)𝐴𝐴𝑎𝑎(𝑥𝑥 + (𝑁𝑁 − 2)𝜔𝜔,𝐸𝐸,𝜔𝜔) …𝐴𝐴𝑎𝑎(𝑥𝑥,𝐸𝐸,𝜔𝜔) , 

where 

                        𝐴𝐴𝑎𝑎(x, E,ω) = �𝑎𝑎
(𝑥𝑥) − 𝐸𝐸 −𝑏𝑏(𝑥𝑥)
𝑏𝑏(𝑥𝑥 + 𝜔𝜔) 0 �. 

Set 

                       𝐿𝐿𝑁𝑁(𝐸𝐸,𝜔𝜔) = 1
𝑁𝑁 ∫ log ||𝑀𝑀𝑁𝑁(𝑥𝑥,𝐸𝐸,𝜔𝜔)||𝑑𝑑𝑥𝑥𝕋𝕋 , 

and due to the subadditive property, the limits 

(1.2)               L(𝐸𝐸,𝜔𝜔) = lim𝑁𝑁→∞ ∫
1
𝑁𝑁

log�|𝑀𝑀𝑁𝑁(𝑥𝑥,𝐸𝐸,𝜔𝜔)|� 𝑑𝑑𝑥𝑥 = lim𝑁𝑁→∞ 𝐿𝐿𝑛𝑛(𝐸𝐸,𝜔𝜔) ≥ 0𝕋𝕋 , 

exists, which is defined to be the Lyapunov exponent. Fixed ω ∈ ℝ\ℚ, consider the continued 

fraction expansion ω = [𝑎𝑎1,𝑎𝑎2,⋯ ] with convergence 𝑝𝑝𝑠𝑠
𝑞𝑞𝑠𝑠

 for s = 1, 2, …. Let 

                           β = β(ω) = lim 𝑠𝑠𝑠𝑠𝑝𝑝
𝑠𝑠

log𝑞𝑞𝑠𝑠+1
𝑞𝑞𝑠𝑠

. 

We say that ω is Week Liouville, if ω ∈ {ω|β(ω) < 𝑐𝑐}, where c is a positive constant depending 
on a(x) and b(x), and will be specified later. Then we get the following main theorem: 
Main Theorem . Assume thatL(𝐸𝐸0,ω) > 0 and ω is Week Liouville. Then there exists ρ > 0 
such that for any E,E′ϵ(𝐸𝐸0 − 𝜌𝜌0,𝐸𝐸0 + 𝜌𝜌0) holds 
                       |L(E) − l(E′)| < 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝑐𝑐|log|𝐸𝐸 − 𝐸𝐸′||𝛼𝛼) 
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where α = α(a, b,ω,𝐸𝐸0) > 0. 
 

For the continuity of the Lyapunov exponent, Goldstein and Schlag developed  two powerful 
tools, the Large Deviation Theorem and the Avalanche Principle, in [3]. Then, in [1,2,6], people 
were always using these two tools to prove the continuity of Lyapunov exponent in different 
condition. Now we all know that the Avalanche Principle is easy to be satisfied, and the Large 
Deviation Theorem is the key. So we can prove the Main Theorem very easily if we get the 
following called Large Deviation Theorem in our condition: 
Theorem 1 (Large Deviation Theorem). Assume that L(𝐸𝐸0,ω) > 0 and ω is Week Liouville. Then 
for any κ > 0, there exists 𝑁𝑁0, such that for any N >𝑁𝑁0, we have 

(1.3)    mes{x ∈ 𝕋𝕋: | 1
𝑁𝑁

log�|𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥,𝜔𝜔,𝐸𝐸0)|� − 1

𝑁𝑁 ∫ log�|𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥,𝜔𝜔,𝐸𝐸0)|� 𝑑𝑑𝑥𝑥𝕋𝕋 | > 𝜅𝜅} < exp (−𝑐𝑐𝑁𝑁𝜏𝜏), 

where c and τ are constants. 
 

2. Proof of the Main Theorem 

As mentioned above, we only need to prove the Large Deviation Theorem, whose proof  is 
separated into the following several steps: 
2.1. The Fourier Coefficient of the Subharmonic Function. The following theorem is Lemma 2.2 
in [4], whose proof will be omitted in this paper. 
Lemma 2.1. Let u : Ω → ℝ be a subharmonic function on a domain  Ω ⊂ ℂ. Suppose that ∂Ω 
consists of finitely many piece-wise 𝐶𝐶1 curves. There exists a positive measure μ on Ω such that 
for any Ω1 ⊆ Ω (ie,Ω1 is a compactly contained subregion of Ω), 

                         u(z) = ∫ log |𝑧𝑧 − 𝜉𝜉|𝑑𝑑𝑑𝑑(𝜉𝜉) + ℎ(𝑧𝑧)Ω1
, 

where h is harmonic on Ω1 and µ is unique with this property. Moreover, µ and h satisfy the 

bounds           µ(Ω1) ≤ C(Ω,Ω1)(𝑠𝑠𝑠𝑠𝑝𝑝Ω u − 𝑠𝑠𝑠𝑠𝑝𝑝
Ω1

u), 

| �ℎ −
𝑠𝑠𝑠𝑠𝑒𝑒
Ω1

𝑠𝑠� |𝐿𝐿∞(Ω2) ≤ C(Ω,Ω1,Ω2)(
𝑠𝑠𝑠𝑠𝑒𝑒
Ω

u −
𝑠𝑠𝑠𝑠𝑒𝑒
Ω1

u) 

for any Ω2 ⊆ Ω1. 
Let  

(2.11)                 𝑠𝑠𝑁𝑁 = 𝑠𝑠𝑁𝑁(𝑥𝑥,𝜔𝜔,𝐸𝐸) = 1
𝑁𝑁

log ||𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥,𝜔𝜔,𝐸𝐸)||, 

 𝑤𝑤𝑁𝑁 = 𝑤𝑤𝑁𝑁(𝑥𝑥,𝜔𝜔,𝐸𝐸) = max(1
𝑁𝑁

log ||𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥,𝜔𝜔,𝐸𝐸||,−𝑁𝑁𝑟𝑟), 

where r is constant and to be defined later. Then 𝑠𝑠𝑁𝑁(ω, E) is subharmonic function on the domain 
Im𝑧𝑧𝑗𝑗 < ρ, and so is 𝑤𝑤𝑁𝑁(z, ω, E), as the maximum of two subharmonic functions is also 
subharmonic. By the upper lemma, it yields 

(2.12)                         |𝑠𝑠𝑁𝑁�(𝑘𝑘)|, |𝑤𝑤𝑁𝑁� (𝑘𝑘)| < 𝐵𝐵
|𝑘𝑘|

, 

where 𝑓𝑓(𝑘𝑘) is the k-th Fourier coefficient of f (x). 
2.2. Some Estimate with Any Frequency. 
Lemma 2.2. There exist 𝑐𝑐1 > 0, s.t. for any 0 < δ < 1, there exists 𝐶𝐶2 < ∞, s.t. 

                meas{x: |𝑤𝑤𝑁𝑁(𝑥𝑥) − 𝑤𝑤𝑁𝑁(𝑥𝑥 + 𝜔𝜔)| > 𝐶𝐶2
𝑁𝑁1−𝛿𝛿

} < exp (−𝑐𝑐1𝑁𝑁𝛿𝛿), 
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Proof of Lemma 2.2. Note that 

                   |𝑤𝑤𝑁𝑁(𝑥𝑥) − 𝑤𝑤𝑁𝑁(𝑥𝑥 + 𝜔𝜔)| ≤ | 1
𝑁𝑁

log�|𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥)|� − 1

𝑁𝑁
log�|𝑀𝑀𝑁𝑁

𝑎𝑎(𝑥𝑥 + 𝜔𝜔)|� |. 

There exists C < ∞, s.t. 

                      �|𝐴𝐴𝑎𝑎(𝑥𝑥 + 𝑗𝑗𝜔𝜔)|� < 𝐶𝐶, ||𝐴𝐴𝑎𝑎(𝑥𝑥 + 𝑗𝑗𝜔𝜔)−1|| ≤ 1
𝑑𝑑(𝑥𝑥+𝑗𝑗𝜔𝜔)

𝐶𝐶 

Let 𝑑𝑑𝑗𝑗(𝑥𝑥) = det (𝐴𝐴𝑎𝑎(𝑥𝑥 + 𝑗𝑗𝜔𝜔)).jω)). Therefore, we have 

        ||𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥 + 𝜔𝜔)|| < 1

𝑑𝑑(𝑥𝑥)
𝐶𝐶2||𝑀𝑀𝑁𝑁

𝑎𝑎(𝑥𝑥)||,and  ||𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥)|| < 1

|𝑑𝑑𝑁𝑁(𝑥𝑥)|
𝐶𝐶2||𝑀𝑀𝑁𝑁

𝑎𝑎(𝑥𝑥 + 𝜔𝜔)||. 

Set 0 < δ < 1. Consider the two cases: Case (a) : |𝑑𝑑𝑗𝑗| ≥ exp (−𝑁𝑁𝛿𝛿), j = 0, N and case (b) :|𝑑𝑑𝑗𝑗| <

𝑒𝑒𝑥𝑥𝑒𝑒 (−𝑁𝑁𝛿𝛿)  for some j ∈ {0, N}. If we are in the case (a), then the above calculation gives: 

                    max(
��𝑀𝑀𝑁𝑁

𝑎𝑎(𝑥𝑥)��

�|𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥+𝜔𝜔)|�

,
��𝑀𝑀𝑁𝑁

𝑎𝑎(𝑥𝑥+𝜔𝜔)��

|�𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥)�|

) < exp (𝑁𝑁𝛿𝛿)𝐶𝐶2, 

and hence 

                   | 1
𝑁𝑁

log�|𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥)|� − 1

𝑁𝑁
log�|𝑀𝑀𝑁𝑁

𝑎𝑎(𝑥𝑥 + 𝜔𝜔)|� | < 𝐶𝐶
𝑁𝑁1−𝛿𝛿

. 

We now need to bound the measure for the case (b). Let 

𝕊𝕊 = {x ∈ 𝕋𝕋: �𝑑𝑑𝑗𝑗� < exp�−𝑁𝑁𝛿𝛿� , for some j ∈ {0, N}}. By the Lojasiewicz inequality ([5]), 

(1)                         meas{x ∈ 𝕋𝕋: |d(x)| < 𝛿𝛿} < 𝛿𝛿𝛼𝛼, 
for any sufficiently small δ and α depending only on d(x). Therefore, 
                      meas(𝕊𝕊) < 2exp (−α𝑁𝑁𝛿𝛿) < 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝑐𝑐1𝑁𝑁𝛿𝛿) 
                                                                           
Thus, 

 Meas �x: |𝑤𝑤𝑁𝑁(𝑥𝑥) − 𝑤𝑤𝑁𝑁(𝑥𝑥 + 𝑗𝑗𝜔𝜔)| > 𝑗𝑗𝐶𝐶2
𝑁𝑁1−𝛿𝛿

� < jexp�−𝑐𝑐1𝑁𝑁𝛿𝛿�, meas �x: |𝑤𝑤𝑁𝑁(𝑥𝑥) − 𝑤𝑤𝑅𝑅(𝑥𝑥)| > 𝑅𝑅𝐶𝐶2
𝑁𝑁1−𝛿𝛿

� 

                                                                                < 2𝑅𝑅2exp�−𝑐𝑐1𝑁𝑁𝛿𝛿�. 

Lemma 2.3. For N large enough, 
                     | < 𝑤𝑤𝑁𝑁 > −< 𝑠𝑠𝑁𝑁 > | < exp (−𝑐𝑐7𝑁𝑁𝑟𝑟). 

Proof of Lemma 2.3. Set 𝕏𝕏 = �x ∈ 𝕋𝕋: �|𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥)|� < exp(−𝑁𝑁1+𝑟𝑟)� = {𝑥𝑥:𝑤𝑤𝑁𝑁(𝑥𝑥) ≠ 𝑠𝑠𝑁𝑁(𝑥𝑥)}.Then 

                         | < 𝑤𝑤𝑁𝑁 > −< 𝑠𝑠𝑁𝑁 > | = 1
𝑁𝑁 ∫ |log 𝑒𝑒

−𝑁𝑁1+𝑟𝑟

|�𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥)�|

|𝑑𝑑𝑥𝑥𝕏𝕏 . 

Since ||𝑀𝑀||2 ≥ |det𝑀𝑀|, hence if x ∈ 𝕏𝕏, then 

                            ∏ |𝑑𝑑𝑗𝑗(𝑥𝑥)𝑁𝑁−1
𝑗𝑗=0 | < exp {−2𝑁𝑁1+𝑟𝑟} 

So 

          𝕏𝕏′ = �x:∏ �𝑑𝑑𝑗𝑗(𝑥𝑥)� < exp(−2𝑁𝑁1+𝑟𝑟)𝑁𝑁−1
𝑗𝑗=1 � ⊂ 𝕏𝕏 = {x ∈ 𝕋𝕋: �|𝑀𝑀𝑁𝑁

𝑎𝑎(𝑥𝑥)|� < exp(−𝑁𝑁1+𝑟𝑟)}. 

As ∏ |𝑑𝑑𝑗𝑗(𝑥𝑥)𝑁𝑁−1
𝑗𝑗=0 | is formed by N part by multiplication, there will be some one such that 

∃i ∈ {0,1,⋯ , N − 1}, |𝑑𝑑𝑖𝑖(x)| < 𝑒𝑒−2𝑁𝑁𝑟𝑟,if x ∈ 𝕏𝕏′.Set 𝕊𝕊𝑖𝑖 = �x: �𝑑𝑑𝑗𝑗(𝑥𝑥)� < 𝑒𝑒−2𝑁𝑁𝑟𝑟�,so 

                   𝕏𝕏′ ⊂ ⋃ 𝕊𝕊𝑖𝑖  𝑁𝑁−1
𝑖𝑖=0 𝑎𝑎𝑛𝑛𝑑𝑑  𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠( 𝕏𝕏′) ≤ 𝑁𝑁| × 𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠(𝕊𝕊0) . 
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By (1), 

         meas(𝕊𝕊𝑖𝑖) = meas(𝕊𝕊0) = meas��x: |d(x)| < 𝑒𝑒−2𝑁𝑁𝑟𝑟�� < �𝑒𝑒−2𝑁𝑁𝑟𝑟�
𝛼𝛼

= 𝑒𝑒−2𝛼𝛼𝑁𝑁𝑟𝑟 

So 
 (2)                        mes 𝕏𝕏 < meas(𝕏𝕏′) < 𝑁𝑁𝑒𝑒−2𝛼𝛼𝑁𝑁𝑟𝑟 
What’s more, we have 
Lemma 2.4. 

            ∫ log�dj(x)�𝕏𝕏′ dx < 𝑒𝑒𝑥𝑥𝑒𝑒 (−c6Nr),∀j ∈ {1,2,⋯N}. 

Proof of Lemma 2.4. Set 𝔹𝔹k = {x: ϵ
2k
≤ |dj(x)| < ϵ

2k−1
}. Then 

∫ log�dj(x)�𝕏𝕏′ dx = ∑ ∫ log�dj(x)�𝔹𝔹k∩𝕏𝕏′
dx∞

k=1 + ∫ log�dj(x)�𝕏𝕏′\⋃ 𝔹𝔹k∞
k=1

dx ≤

∑ meas(𝔹𝔹k) �log ϵ
2k
� + meas(𝕏𝕏′)| log ϵ |∞

k=1 . 

We only consider dj(x) is small, as when dj(x) is big , we have the same result. By (1), we have 

                               meas(𝔹𝔹k) < ( ϵ
2k−1

)α. 

Therefore, 

� log�dj(x)�
𝕏𝕏′

dx < ��
ϵ

2k−1
�
α
�log

ϵ
2k
�

∞

k=1

+ N exp(−2𝛼𝛼𝑁𝑁𝑟𝑟) |log ϵ| 

          < (𝐶𝐶ϵα + N exp(−2𝛼𝛼𝑁𝑁𝑟𝑟)) |log ϵ| < 𝑒𝑒𝑥𝑥𝑒𝑒 (−c6Nr), 
by setting ϵ = exp(−2N).                                                          
As 

                                log 𝑒𝑒−𝑁𝑁
1+𝑟𝑟

��𝑀𝑀𝑁𝑁
𝑎𝑎(𝑥𝑥)��

≥ 0, x ∉ 𝕏𝕏, 

and by (2) and Lemma 2.4, 

| < 𝑤𝑤𝑁𝑁 > −< 𝑠𝑠𝑁𝑁 > | ≤
1
𝑁𝑁
� |(−N)1+r −

1
2
� log�𝑑𝑑𝑗𝑗(𝑥𝑥)� |𝑑𝑑𝑥𝑥
N−1

j=0𝕏𝕏′
 

                                                                    ≤ 1
𝑁𝑁

meas(𝕏𝕏′)N1+r + �∫ log|d(x)|𝕏𝕏′ dx� < 𝑒𝑒𝑥𝑥𝑒𝑒 (−c7Nr). 

                                           
 
2.3.Proof of The Large Deviation Theorem. Above all, we have 
 |𝑠𝑠𝑁𝑁(𝑥𝑥)−< 𝑠𝑠𝑁𝑁 > | ≤ |𝑠𝑠𝑁𝑁(𝑥𝑥) − 𝑤𝑤𝑁𝑁(𝑥𝑥)| + |𝑤𝑤𝑁𝑁(𝑥𝑥) − 𝑤𝑤𝑅𝑅(𝑥𝑥)| + |𝑤𝑤𝑅𝑅(𝑥𝑥)−< 𝑤𝑤𝑁𝑁 > | 
                   + | < 𝑤𝑤𝑁𝑁 > −< 𝑠𝑠𝑁𝑁 > | 
and 
               mes {x ∶ |𝑠𝑠𝑁𝑁(𝑥𝑥) − 𝑤𝑤𝑁𝑁(𝑥𝑥)| > 𝜅𝜅} ≤ 𝑚𝑚𝑒𝑒𝑠𝑠 𝕏𝕏 < 𝑁𝑁𝑒𝑒−2𝛼𝛼𝑁𝑁𝑟𝑟   

In [5], You and Zhang proved that if β(ω) < κ
C
 , 

                   mes {x ∶ |𝑤𝑤𝑅𝑅−< 𝑤𝑤𝑁𝑁 > |  > 𝜅𝜅} < 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝑐𝑐κ3R). 
Thus 

     Mes {x ∶ |𝑠𝑠𝑁𝑁(𝑥𝑥)−< 𝑠𝑠𝑁𝑁 > �> 2𝜅𝜅 + 𝑅𝑅𝐶𝐶2
𝑁𝑁1−𝛿𝛿

+ exp(−c2Nr)� < exp(−cκ2R) + 𝑁𝑁𝑒𝑒−2𝛼𝛼𝑁𝑁𝑟𝑟 
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+2R2 exp�−c1Nδ�. 

Let R =  N1−2δ and  κ > N−δ,and δ = r = 0.2, then for any κ > 0, there existsNk > 0, such that 
for any N >Nk, we have 
            mes {x ∶  |𝑠𝑠𝑁𝑁(𝑥𝑥)−< 𝑠𝑠𝑁𝑁 > | > 𝜅𝜅} < exp(−cN0.2), 
So we prove the large deviation theorem and then the main theorem has been proved . 
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