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Abstract. In recent years, the methods with a generalized hidden Markov model have 

gained significant application and development in gene prediction, which is predicting 

the location and structure of genes in genomic sequences, and produced an army of 

remarkable programs, such as Genie, GENSCAN, AUGUSTUS, etc. In spite of some 

limitations, the favorable performance and accuracy these programs still show have 

withstood the test of practice and time. Here, we provide a comprehensive review of 

the method of gene prediction with a novel hidden Markov model and some statistical 

models of related states included, just to share this knowledge with individuals 

interested in it. 

Introduction 

With the development and gradual promotion of the third-generation gene sequencing 

technology [1], whose sequencing costs become lower while each sequencing length 

become much longer and sequencing accuracy much higher, we have accumulated 

more and more complete and clear whole-genome sequences for all kindsof 

organisms at a faster rate. Driven by this explosion of genome data, gene prediction 

programs have also proliferated, particularly those that are designed for specific 

organisms. Although there is still a considerable gap between the true prediction 

accuracy and the perfect state, the improvement these programs, such as Genie [2], 

GENSCAN [3], and AUGUSTUS[4], provided on the prediction accuracy is 

invariably exciting and encouraging, just take Human as an example, at the nucleotide 

level, more than 90% of genes are accurately predicted, at the exon level, not lower 

than 80% are predicted, and at the whole-gene level about 45%, which is largely 

beneficial to the improvement of the efficiency of genome annotation[5]. 

However, the background knowledge of these implemented programs is extremely 

complicated, here, and we simply state some. To any gene prediction programs, there 

are only two important aspects, one is the information made use of by them, which is 

generally divided into signal sensors and content sensors, and the other is the methods 

used to combine that information into a reliable predictor, for example artificial neural 

networks (ANN) [6]. Signal sensors are regarded as the basic and natural approach of 

finding the presence of functional sites, among the types of functional sites are 

promoters, start and stop codons, splice sites, branch points, etc., and many early 

approaches to gene prediction focused on it. As for content sensors, they are measures 
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that try to classify a DNA region into coding and noncoding, which are mainly based 

on extrinsic similarity with a biologically characterized sequence, e.g., protein 

sequence, cDNA or expressed sequence tag (EST) sequence and DNA sequence, and 

intrinsic statistical properties such as codon usage (a triplet of DNA bases), GC 

content, nucleotide composition, hexamer frequency, and base occurrence periodicity. 

The methods that use signal sensors or both signal and intrinsic content sensors are 

known as ab initio methods of gene prediction [7]. The Generalized Hidden Markov 

Model (GHMM), an approach developed from a HMM,is exactly prestigious one of 

the methods and also has proven a useful framework for the task of computational 

gene prediction in eukaryotic genomes, due to its flexibility and probabilistic 

underpinnings. So we provide a comprehensive review of this method and some 

classical models of related states involved to share with individuals interested in it. 

Modeling Gene with GHMM 

Hidden Markov Models (HMM) have been used for decades in pattern recognition 

and their applicability to computational biology has gained widely recognition. But as 

we all know, a standard Hidden Markov model is just a state-based generative model 

which transitions stochastically from state to state, emitting a single symbol from each 

state. Although it can produce a certain effect in gene prediction, the recognition 

accuracy is still far from satisfactory. A GHMM, which is also known as semi-Markov 

model, generalizes this scenario by allowing individual states to emit a string of 

symbols rather than only one symbol at a time [8,9]. And it is generally parameterized 

by its transition probabilities, state duration (i.e., feature length) probabilities, and 

state emission probabilities. These probabilities influence the behavior of the model in 

terms of which sequences are most likely to be emitted and which series of states are 

most likely to be visited by the model as it generates its output. 

As the prokaryotic structure is relatively simple, we decide to ignore it in this 

article. Eukaryotic gene prediction entails the parsing of a DNA sequence into a set of 

putative CDSs (coding segments) and their corresponding exon-intron structure [10]. 

Thus, the problem of eukaryotic gene prediction can be almost identical to obtained 

one of approved parsing sequences over the nucleotide alphabet { , , , }A C G T   

according to the regular expression [11]. 

* * * * * * *( ( ) )ATG GT AG                                          (1) 

Here, *  denotes a string consisting of any number of the above-mentioned 

nucleotide alphabet, and it can refer to DNA sequences of intergenic region as well as 

intron and exon removed some specific endpoint regions, ATG denotes a relatively 

common start codon, GT and AG denote split sites, respectively donors and 

acceptors, and { , , }TAG TGA TAA   denotes a stop codon. It is a fairly typical regular 

expression of gene structure analysis to state our concern; however, there are still 
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some crucial points to be supplemented in Eq. 1. Firstly, an additional constraint not 

explicitly represented in it is that the number of non-intron nucleotides between the 

start and stop codons of a single gene must be a multiple of three. Secondly, if these 

nucleotides are aggregated into a discrete number of non-overlapping triples, or 

codons, then none of these codons must be a stop codon, other than the stop codon 

which terminates the genes. Finally, note that the * terms in Eq. 1 also permit the 

occurrence of pseudo-signals, e.g., an ATG triple which does not comprise a true start 

codon. Gene prediction with a GHMM thus entails parsing with an ambiguous 

stochastic regular grammar; the challenge is to find the most probable parse of an 

input sequence, given the GHMM parameters and the input sequence. 

In the case of standard hidden Markov Models, this optimal parsing (or decoding) 

problem can be solved easily with the well-known Viterbi algorithm [12], a dynamic 

programming algorithm with run time linear in the sequence length, if given a fixed 

number of states. Since each state can now emit more than one symbol at a time in the 

case of GHMMs, the Viterbi algorithm is required to modify to solve the following 

optimization problem. 
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Where   is a decoding of the sequence consisting of a series of states iq and state 

durations
id , 0 i n  , with each state iq  emitting subsequence 

iS  of length 
id ,so 

that the concatenation of all 
0 1... nS S S  produces the complete output sequence S , but 

note that states 0q and nq  are silent, producing no output, ( | , )e i i ip S q d  represents the 

probability that state
iq emits subsequence 

iS , given duration
id ; 1( | )t i ip q q   is the 

probability that the GHMM transitions from state 
1iq 
 to state iq ; and ( | )d i ip d q  is 

the probability that state iq  has duration 
id . The argmax  is over all parses of the 

DNA sequence into well-formed exon-intron structures, hence, the problem is to find 

the optimal parse which maximizes the product in Eq. 2. 

With no consideration of frame constraints and the single or double strand question 

and through structural transformations of Eq. 1, we can get an oversimplified GHMM 
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Figure 1.A typical GHMM topology 

topologyof gene structure depicted in Fig. 1,which is just right beneficial for us to 

assign to the elements of Eq. 2 and then handle it [13]. In Fig. 1, S means start codon, 

usually referring specifically to ATG; T means stop codon, mainly referring to TAG, 

TAA and TGA; DSS and ASS respectively are donor and acceptor, separately 

corresponding to string GT and AG described in Eq. 1. These characters in diamonds 

denote the states for fixed length features, which represent signal sensors and can be 

simulated by the WMM [14], WAM [15], WWAM, MDD [2] tress, etc. N denotes 

intergenic, I denotes intron, Einit, Eint, Efin and Esng respectively denote initial exon, 

internal exon, final exon and single exon. They are included in circles that signify 

states for variable length features, associated with these circular states are 

variable-length models and can be simulated by the MC or IMM model [16]. 

Combining these related state-simulated models with the approaches based on 

Dynamic Programming such as the Prefix Sum Arrays (PSA) algorithm and the 

Dynamic Score Propagation (DSP) algorithm [11], we can confidently gain what we 

want from the Eq. 2. However, as for the details of those state-simulated models, we 

will elaborate them below. 

Some Statistical Models of Related States 

WMM 

WMM is the abbreviation of the weight matrix method introduced by Staden in 1984, 

which is one of the earliest and most influential approaches to construct some 

numerous models of biological signal sequences such as donor and accepter sites, 

promoters, polyA_signal, etc.It only describes the distribution relationship of different 

characters or states in the same position, with no need to consider the associated effect 

produced by its adjacent and non-adjacent positions. It requires that the training 

dataset of signal sequences must be aligned, namely, all the length of the signal 

sequence must be the same. And in the WMM model, the frequency ( )i

jp of each 
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nucleotide j at each position i of a signal of length n is derived from a collection 

of aligned signal sequences and the product ( )

1

{ }
i

n
i

x

i

P X p


  is used to estimate the 

probability of generating a particular sequence, 1 2, ,..., nX x x x   . The following 

shows an example ofprobability model results of signal ASS trained by the WMM.  

 

Figure 2. 

In Fig. 2, the sum of probabilities of nucleotide A, C, G and T in the same column is 

constantly equal to 1. If there are probability distributions of individuals behaving 

obvious bias instead of uniform distribution, it can be thought that the WMM model 

has the ability to accurately describe the features in this signal sensor. The more such 

columns are, the more accurate these features of this signal sensor are depicted by the 

WMM. However, observing more carefully, we can perceive a wrong place that the 

probability values of some individuals in the last two are 0, which may result in a 

certain analytical error caused by aforementioned decoding algorithms. Therefore, in 

order to get rid of this situation, although it is indeed entirely correct description to 

signal features, we must make a slice of adjustments to ensure that all the probability 

values of individuals in the same column are not equal to 0. 

WAM, WWAM 

WAM, termed weight array model, is an enhanced version of the WMM. It was firstly 

applied by Zhang & Marr in 1993, in which dependencies between adjacent positions 

are considered. In this model, the probability of generating a particular sequence is: 

1 1
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i i
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
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Where ( 1, )

,

i i

j kp  is the conditional probability of generating nucleotide kX at 

position i , given nucleotide jX at position 1i  , it is estimated from the corresponding 

conditional frequency in the set of aligned signal sequences.Of course, high-order 

WAM models capturing second-order or third-order dependencies in signal sequences 

could be used in principle, but it is emphasized that there must be sufficient data 

available to estimate the increased number of parameters in such models. 

WWAM, called the windowed weight array model, is an improved version of the 

WAM model. It, for example the WWAM of order k and window size 2 1r  , can be 

regarded as an inhomogeneous Markov Model of order k in which the probability of 
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observing nucleotide at position i , given that the preceding k nucleotides are 

1,..., kx x is estimated by the relative frequency of observing x after nucleotides 

1,..., kx x in the training data at one of the positions in the window ,...,i r i r  .Of 

course, for that purpose, the training data is also required to be aligned with respect to 

the biological signal modeled. 

MDD 

MDD means Maximal Dependence Decomposition, which is firstly introduced to 

model donor splice sites by Chris Burge & Samuel Karlin in 1997. It is designed to 

compensate for the lack of modeling capability of the above-mentioned model to the 

donor splice signal, because of the highly significant dependencies between 

non-adjacent as well as adjacent positions in it. However, itcan perfectly capture these 

most significant dependencies, essentially by replacing unconditional WMM 

probabilities by appropriate conditional probabilities provided that sufficient data is 

available to do so reliably. Given a data set D consisting of N aligned sequences of 

length k , our first step is to gain a consensus nucleotide or nucleotides at each 

position. Then, for each pair of position, calculate the 2 statisticsof 
iC versus 

jX (
iC defined that if the nucleotide at position i  matches the consensus at i , its 

value is 1, otherwise 0, and nucleotide indicator 
jX  identifying the nucleotide at 

position j ) for each i , j pair with i j . If no significant dependencies are detected, 

given an appropriate P-value, then the simple WMM should be sufficient. If 

significant dependencies exclusively or predominantly locate at adjacent positions, 

then a WAM model should be appropriate. If, however, there are strong dependencies 

both of non-adjacent and adjacent positions, then we process it as follows.  

(1) Calculate, for each position i , the sum 2 ( , )i i j

j i

S C X


 , which is a measure 

of the amount of dependence between the variable 
iC and thenucleotides at the 

remaining positions of the site. 

(2) Choose the value mi such that 
mi

S is maximal and partition D into two subsets: 

mi
D  all sequenceswhich have the consensus nucleotide(s) at position mi ; and 

mi
D all 

sequences which do not. 

Then repeat steps (1) and (2) on each of the subsets, 
mi

D and
mi

D , until yield a binary 

subdivision tree with at most 1k  levels. Of course, this process can also be ended 

when either of the following two conditions occurs. One is that no significant 

dependencies between positions in a subset are detected so that further subdivision is 
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not indicated. The other is that the number of sequences remaining in a subset 

becomes so small that reliable WMM frequencies could not be determined after 

further subdivision. Finally, we can form a composite model by 

proportionallycombiningthose separate WMM models, which contains the crucial 

information of dependencies between positions. It will be extremelybeneficial to the 

development of accuracy of gene prediction. 

MC 

MC, termed Markov Chain, is a well-known tool for analyzing biological sequence 

data, as an example; modeling the information of base conditional distribution of 

intergenic, intron and exon. A first order Markov Chain is a sequence of random 

variables where the probability that 
iX  takes a particular value only depends on the 

preceding variable
1iX 
, and according to the natural generalization of this definition, 

in an thn order Markov Chain, the probability distribution of the random 

variable
iX only depends on the n preceding bases. When modeled a state 

iq with 

the duration length id in a gene structure, it can be evaluated by this form: 

11
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Here, jx is the 
thj nucleotide in the sequence of the putative feature, 

id  is the 

length of that feature, and 1( | ... )j j n jp x x x   is the conditional probability of 

nucleotide jx , given its n predecessor nucleotides. However, in spite of its simplicity 

and flexibility, there is still one essential point need to be noted that sufficient data 

must be ready for accurately estimating the probability of each base occurring after 

every possible combination of n preceding bases, which requires 
14n
 probabilities to 

be estimated simultaneously from that training data, but it is generally tremendously 

difficult, e.g., 4096 probabilities for a commonly used 5th
-order model. 

IMM 

IMM, namely, interpolated Markov models, is unprecedentedly used by the team of 

Steven’s (1997) in a system of gene prediction, called GLIMMER, which is 

exclusively to identify coding regions in microbial DNA. It is based on this idea that 

in the genome of some organisms, some low-mers will occur too infrequently to give 

reliable estimates of the probability of the next base, while some high-mers occurring 
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frequently can do so, and exploit a linear combination of probabilities obtained from 

several lengths of oligomers to make predictions by giving high weights to oligomer 

that occur frequently and low weights to those that do not. Therefore, the IMM is a 

model which uses a longer context to make prediction as far as possibly, taking 

advantage of the greater accuracy produced by high-order Markov models, and can 

overcome the problem of the incompleteness of base probability model trained 

without adequate training data set. But if the statistics on longer oligomers are 

insufficient to produce good estimates, it can fall back on shorter oligomers to make 

its predictions. 

Yet as for the reasons why the high order Markov models can perform better than 

the low order ones, theoretically speaking, the higher the order of Markov models 

used is, the stronger constraints the conditional probability of each nucleotide at a 

certain position will gain, and then it also can be evaluated much more accurately. In 

addition, as for the details of the IMM model which are applied and constructed, we 

firstly need to know the probability, ( | )p S M  that the model generated a new sequence S , 

given a trained IMM model. It can be computed as [16] 

1

( | ) ( )
n

k x

x

p S M IMM S



                                                         (5) 

Where, 
xS is the oligomer ending at position x , n  is the length of the sequence and 

k is the order of the interpolated Markov model. ( )k xIMM S , the thk -orderIMM score, 

can be written as: 

1 1 1( ) ( ) ( ) [1 ( )] ( )k x k x k x k x k xIMM S S p S S IMM S       
                    (6) 

Here, 1( )k xS   is the numeric weight associated with the k -mer ending at position 

1x  in the sequence S and ( )k xp S  is the estimate obtained from the training data of the 

probability of the base located at x in the k order model.  

In this section we roughly describe how to compute the values of the parameters 

for the thk -order IMM in Eq. 6. In GLIMMER, the value of 1( )k xS  that we 

associate with ( )k xp S is regarded as a measure of our confidence in the accuracy of 

thisvalue as an estimate of the true probability, which can be determined by two 

criteria. The first of these is simplefrequency of occurrence. If the number of 

occurrences of context string xS in the training data exceeds a specific threshold 

value, it can be straightly set to 1.0, which the AUGUSTUS only adopts and the 
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threshold is similarly 400 (which gives ~95% confidencethat the sample probabilities 

are within 0.05 of the true probabilities from which the sample was taken. ).And 

when there are insufficiently many sample occurrences of a context string to estimate 

the probability of the next base with confidence, the other criteria is that, for a given 

context string ,x kS  of length k ,comparing the observed frequencies of the base, 

,( , )x kf S a ,
,( , )x kf S c ,

,( , )x kf S g and 
,( , )x kf S t ,calculating IMM probabilities using the 

next shorter context, 1 , 1( , )k x kIMM S a  , 1 , 1( , )k x kIMM S c  , 1 , 1( , )k x kIMM S g   and 1 , 1( , )k x kIMM S t  , and 

using a 2 test to determine how likely it is that the four observed frequencies are 

consistent with the IMM values from the next shorter context. If they are significantly 

different, chose them as better predictors of the next base by giving them a 

high value, while they offer little predictive value and hence are given a lower   

value. Specifically, when calculate the
2 confidence c that they are not consistent 

and set. 

1 2

{ }

0.0

1
( ... )
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0.5
( ) {
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b acgt
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f s s s b

if c
S

if c










                                    (7) 

Of course, all roads lead to Rome, as for the other methods of assigning values for 

IMMs, or even for building nonuniform Markov models are cited in [17]. 

Conclusion 

Gene prediction, as an important open problem in bioinformatics, have been 

cultivated by human for many years, and with all kinds of advanced computational 

approaches, such as ANN, fuzzy logic, Decision Tree, etc. significant progress have 

taken place in this area, however, some problems along with this progress are still 

vividly exist, e.g., how to handle non-canonical splice sites and predict alternative 

splice sites, how to process a large number of false positives resulted from splice site 

programs and how to locate exactly short exons, especially those bordered by long 

introns, which concurrently make the gene prediction more permanently challenging, 

thus if we still expect to perfectly and thoroughly solve it, more effort and time, 

especially innovation, must be devoted. Here, in order to more or less help to reach 

the goal as soon as possible, we write this review thatmainlyinvolves in 

implementation points of the method GHMM and some statistical models of related 

statesincluded, and share it, also hoping that brilliant you can make a greater 

breakthrough. 
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