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Abstract. Prediction of splice sites plays a key role in the annotation of genes. SVM 

with the weighted degree kernel has been proved to achieve a satisfactory performance. 

However, this kernel did not consider the effect of the position. In this article, we 

explored the relationship between the weighted degree kernel and the position of single 

base match. We defined a position factor to measure the effect of the position on 

weighted degree kernel, and selected several positions with high position factors to be 

key positions. Then we constructed a classification model and applied it to the Homo 

sapiens splice site dataset. To analyze the effect of the position of single base match, we 

removed the base in the key position and compared the classification accuracy with the 

accuracy without removing. The result shows that the position of single base match has 

significant influence on weighted degree kernel. 

Introduction 

Owing to the tremendous increase in genomic sequence data, there is an urgent demand 

to improve the efficiency of computational algorithms for gene annotation [1]. The 

accurate prediction of splice sites plays a key role in the annotation of genes in 

eukaryotes [2]. Most eukaryotic protein-coding genes are composed of exons and 

introns. In transcription introns are removed by RNA splicing so they are not coded into 

protein. The border between an exon and intron is referred to as a splice site. Obviously, 

there exists two kinds of splice sites, the splice site at the beginning of the intron is 

termed as a donor site, and the splice site at the end of the intron is termed as an acceptor 

site. Many studies have shown that most introns have an almost invariant dinucleotide 

GT in a donor site and AG in an acceptor site. Unfortunately, there are a large number of 

GT and AG dinucleotides in eukaryotic genes, but only 0.1% of them are true splice 

sites [3]. How to identify whether or not a GT/AG dinucleotide is a true splice site is 

always one of the most important and challenging tasks in bioinformatics [3, 4]. In this 

article, we refer to sequences with true splice sites as positives and sequences with false 

splice sites as negatives. 

In the literature, several statistical models have been constructed for splice site 

prediction. The weight matrix method (WMM) [5] is the earliest and most influential 

one that uses the position-specific compositional biases. Subsequently, many pattern 

recognition algorithms, such as artificial neural network [6], hidden Markov model [7], 

Bayesian network [8], support vector machine (SVM) [3], etc., were successively 

applied to this work. In recent years, SVM and kernel method have been used frequently 
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for splice site prediction due to their high accuracy and capability to deal with 

high-dimensional and large scale datasets [9]. However, the classification accuracy of 

most of SVMs depends on the feature extraction significantly. Actually, for sequence 

analysis tasks such as splice site prediction, the string kernel is a simple but efficient 

method without the feature extraction. In this article, we mainly use weighted degree 

(WD) kernel which is a kind of string kernel and this method can compute efficiently 

without even extracting and enumerating all words from the sequences [10].  

Many studies have shown that the base in the position close to the splice site is 

conserved, so it can be applied to splice site prediction. However, the WD kernel only 

takes the length information of the base match at the responding position into account 

but ignores the position information of the match. In this article, we show that the 

position of single base's match has significant influence on performance of WD kernel, 

and this can improve the performance of the WD kernel. 

Methods  

Weighted Degree Kernel 

The so-called weighted degree (WD) kernel is a kind of string kernel [11]. It is defined 

as 
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The main idea of the WD kernel is to count the matches between two sequences 1x  and 

2x  between the words  1xiu ,  and  2xiu ,  where   11,   iiii xxxu x  for all i  

and d 1  [10]. All matching substrings are rewarded with a score depending on 

the length of the substring. Figure 1 shows the idea appropriately. Given two sequences 

1x  and 2x  of equal length, the kernel consists of a weighted sum to which each match 

in the sequences makes a contribution wB depending on its length B, where longer 

matches contribute more significantly. 

 

Figure 1.  The idea of WD kernel 

Position Factor and Key Position 

From the definition of the WD kernel, we can see that the main idea of the WD kernel is 

to count the co-occurrence of K-mers at the corresponding position in the two 

sequences [12]. However, the WD kernel only considers the length information of the 

base match at the responding position, but many studies have shown that the base near 

the splice site in a certain position is highly conserved. So it will be an interesting 

question whether the position of the single base match has effect on the performance of 

the SVM classifier with the WD kernel. 

Due to the fact that the base in certain position near the true splice site is conserved, 

it's obvious that a position, in which the base distribution of positives and negatives is 
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different, is more likely to be a "key position". We think that the "key positions" have 

greater effect on the performance of the WD kernel. 

The main idea of selecting "key position" is described in Figure 2. Since the WD kernel 

counts the match, the "key position" that we select should be the one in which the base 

from positives or negatives is more conserved than in other positions. For example in 

Figure 2, the bases from positives in a "key position" are all "G" and the bases from 

negatives in the "key position" are all "A".  

 
Figure 2.  The main idea of selecting key positions 

However, it's obvious that this is just an ideal case. So in order to measure this feature 

for each position i  in positives, inspired by the position-weighted matrix (PWM) [13], 

we define 

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where  TCGAB ,,, , 


bip  is probability of each base in positives and p  is the 

average value of 


bip . Similarly, we also define 

id  for each position i  in negatives. 

Obviously, the greater 


id  and 


id  are, the more likely the position is a key position. 

However, only 


id  and 


id  are not enough. If in a position the base distribution is 

very similar even the same between positives and negatives, such as dinucleotide GT in 

a donor site, 


id  and 

id  cannot select the real "key position" for the WD kernel. So we 

define 
,

id  to make our method more discriminative for positives and negatives. Let 

1v  and 2v  be the vectors composed of probability of each base in positives and 

negatives respectively. And the ,

id  is defined as the Euclidean distance between 1v  

and 2v . The greater 
,

id  is, the more likely the position is a key position. 

For each position i  we can get the definition of the position factor  
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In this article, we use this value to measure the effect of each position on WD kernel and 

then select the key position. 

SVM 

SVM is one of the most important machine learning algorithm based on statistical 

learning theory, which is widely-used in many fields. Based on structural risk 

minimization instead of empirical risk minimization, SVM can solve the problems of 

small-sample, non-linearity, over-fitting, dimension disaster, local minimum point, etc., 
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and also has strong generalization ability [14]. The scikit-learn [15] is a practical 

machine learning tool-box in Python, and this study used its SVM classifier with 

custom kernel so as to take advantage of the WD kernel as needed.  

Model Evaluation 

Recall, precision and Matthew’s correlation coefficients (MCC) are for determining the 

performance of a classification model and are defined as follows: 
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where tp , fp , tn , and fn  represent the number of true positives, false positives, true 

negatives and false negatives, respectively. 

Results and Discussions 

In this section we discuss experimental results that we obtained with our method of 

finding key positions for acceptor and donor splice sites. And then we evaluate the 

effect of the potential key position on WD kernel. 

Dataset 

To construct a reliable experiment, we used the publicly available Homo sapiens splice 

site dataset (HS3D) [16] as the model dataset, which was derived from human genes. 

The dataset contains 2796 confirmed true donor splice sites, 271,937 pseudo-donor 

sites, 2880 confirmed true acceptor sites, and 329,374 pseudo-acceptor sites. The 

redundant information has already been removed. Each splice site sequence has the 

length of 140 bp. For donor splice sites, the GT dinucleotide is conserved in positions 

71 and 72 of the sequences, and for acceptor splice sites, AG is conserved in positions 

69 and 70 of the sequences. In this article, we will use the whole dataset to calculate the 

position factor of each position firstly. Then we will construct a 1:1 dataset randomly 

and use this dataset to evaluate the key position's effect on WD kernel. 

Select the Key Position 

In this step, we will use the whole dataset to calculate the position factor. First we 

calculate each base's probability in each position in positives and negatives respectively, 

then we get two 140*4 position-base matrix, which is also called "PPM" [17]. Using 

PPM we can get the position factor for acceptor and donor easily, and the result is 

shown in Figure 3A and 3B. 

From Figure 3A and 3B, we can see that for acceptor splice site the position factors 

of the position from 57 to 66, 68 and 71 of the sequences are much higher than those of 

other positions. And for donor splice site the position factors of the position 70 and 

from 73 to 75 of the sequences are much higher than those of other positions. So we 

consider these positions as the candidate key positions, and they may contribute a lot to 

the performance of the WD kernel. 
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The Key Position's Effect on WD Kernel 

In the previous step, we have selected several candidate key positions. Now we will 

evaluate the effect of these candidate key positions on the performance of the WD 

kernel. 

 
Figure 3A.  The position factor for acceptor 

 
Figure 3B.  The Position Factor for Donor 

We selected all of the true splice sites and randomly selected the same number of 

pseudo-sites (2796 donor sites and 2880 acceptor sites) to construct the training set. In 

this case, the ratio between the number of true splice sites and that of pseudo-splice sites 

is 1:1. Based on the constructed 1:1 dataset, we used the SVM classifier with the WD 

kernel to carry out 10-fold cross-validation, and parameter d  of the WD kernel was set 

to 12. 

To show the effect of the candidate key position clearly, we first apply the 

information of all positions to the WD kernel. Then we remove the base in the target 

position for each sequence and then compare the performance after removing the base 

in the candidate key position to the original performance. By such comparison, the 
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significance of each key position on WD kernel can be available. At the same time, we 

also select some non key positions to do the contrary experiment. 

For acceptor, we select to remove the key position 60, 66, 68, 71 as well as 

non-key-position 50, 67, 69, 72 for contrast experiment. For donor, we select to remove 

the key position 70, 73, 74, 75 as well as non-key-position 67, 68, 71, 76 for contrast 

experiment. The result is shown in Table 1 and Table 2. 

We can see that for both acceptor and donor when we remove the base in the 

candidate key position, the value of recall, precision and MCC all decreased in different 

degree. The higher the position factor the position has, the more three kinds of value 

decreased. So we can get the conclusion that the position factor is a satisfactory 

measurement of the position's significance on WD kernel and the key positions have 

significance on the performance of the WD kernel. 

Table 1  The result of acceptor (10-fold cross-validation) 

 position recall precision MCC 

remove key position 

60 94.97 90.53 0.8510 

66 94.82 89.87 0.8424 

68 92.27 88.96 0.8129 

71 94.78 90.01 0.8436 

keep all positions - 95.49 90.78 0.8586 

remove non key position 

50 95.32 90.67 0.8558 

67 95.30 90.86 0.8577 

69 95.42 90.74 0.8575 

72 95.20 90.60 0.8540 

Table 2  The result of donor (10-fold cross-validation) 

 position recall precision MCC 

remove key position 

70 93.13 90.91 0.8381 

73 93.84 90.49 0.8402 

74 95.77 90.88 0.8625 

75 94.73 90.30 0.8462 

keep all positions - 96.67 93.01 0.8946 

remove non key position 

67 96.63 93.04 0.8946 

68 96.64 92.69 0.8908 

71 96.63 93.07 0.8948 

76 96.33 91.96 0.8801 

Conclusions 

For identification of splice sites, many studies reveal that the position information is 

useful, but string kernel method such as the WD kernel method did not take it into 

account. In this paper, we present a method that measures significance of the position. 

And using this method we find several so-called "key positions" which contribute more 

to the performance of the WD kernel. Based on this work, we will attempt to improve 

performance of the WD kernel by adding the weight to the key position in the future. 
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