

users to edit UI model and data model, save their edited model,
and load their saved model to the editor.

The model editor is composed of the file manager, the UI
model manager, and data model manager as shown in FIGURE
I. The file manager loads and saving files. The file manager
delivers each file of a specific type to a proper manager by
classifying files. We implemented the file manager based on
jQuery to support multi browsers and to simplify searching
DOM (Document Object Model) and binding events. Our UI
model manager is based on jsPlumb as well as jQuery. We
exploit jsPlumb to draw inter-model event on browsers. Finally,
our data model manager manages the value of the data model
that is needed to create the database schema. We also
implemented the data model manager based on jQuery.

 The code generator is composed of the parser and the
translator as shown in FIGURE I. The parser receives the xml
values from the model editor as its input. Then, the xml values
are modified for the translator. In the parser, UI model is
changed to tree structured ID list and the data model is
modified to JSON objects. Parser is based on python for easy
string manipulation. The translator gets preprocessed input
value from the parser and generates a mobile web App based
on the rules defined at [9].

The algorithm of the translator is outlined in Figure III. As
shown, it checks the tree node attribute at ID list that is
structured by the parser. Then, it loads templates that
correspond to the types of node ID attributes. Next, the
translator inserts templates at the proper location that is found
at a pre-defined flag within the output file. For implementing
the templates, we exploit jQuery Mobile and the MVC
architecture. Note that these templates cover CLM and GRM in
the PELUM 4-layer architecture which we presented in Section
II. We classify templates according to the MVC architecture as
shown in FIGURE IV. Template file types are as follows.

 Html template: it implements UIs based on jQuery.

 JavaScript template: it implements db, view, event,
which map model, view, and controller of the MVC
architecture, respectively.

The code generator generates index.html, db.js, view.js,
event.js files from assembling these templates as shown in
Figure I. The main strong point of our tool is that it enables for
users to generate and initialize a local database (Indexed DB)
only by modeling UIs. Moreover, our tool is very flexible
because it represents UIs from the logical point of view, which
dramatically increases the reusability of mobile Apps for
multiple devices.

IV. CONCLUSION

In this paper, we have presented our web-based UI
modeling and automatic mobile web App generation tool. This
tool is composed with a model editor and a code generator. The
Users can model their UIs using the model editor. Specifically,
the model editor enables users to model their logical UI models
(LUM) and the programming interface model (PIM). The code
generator generates a mobile web app based on (LUM and
PIM) models edited in the model editor. The automatically
generated App can be easily configurable according to various

screen sizes, actuators, and sensors since the implementation is
based on jQuery mobile and the architecture follows the MVC
architectural pattern. With this, users can rapidly develop their
Apps for multiple devices. As future work, we will enable for
users to model the GRM (Graphical Resource Model) and
CLM (Control UI and Layout Model). With this, users can
more easily customize their Apps by customizing graphic,
control widget and layouts.

FIGURE IV. WEB-BASED UI MODELING AND AUTOMATIC

MOBILE WEB APP GENERATION TOOL ARCHITECTURE

ACKNOWLEDGEMENT

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Science, ICT & Future
Planning (NRF-2013R1A1A3006819).

REFERENCES
[1] S. Kim, Pattern and Event Based Logical UI Modeling for Multi-

Device Embedded Applications, Proceedings of International
Conference on Convergence and Hybrid Information Technology, 2011.

[2] S. Kim, Graphical Modeling Environment for Logical User Interfaces
Based on Eclipse GMF, Journal of Information Industrial Engineering,
2011.

[3] Balsasmiq, https://balsamiq.com/

[4] Invision, http://www.invisionapp.com/

[5] Appery, https: // www.appery.io/

[6] mBizmaker, http:// http://www.mbizmaker.com/

[7] jQuery mobeil, https://jquerymobile.com/

[8] K. Choi, S. Kim, Mobile Web Based Reference Implementation for
Logical UI Modeling for Embedded Applications, Journal of
Information Industrial Engineering, 2014

[9] K. Choi, S. Kim, Mapping Logical UI Models to HTML5-based
Embedded Applications, Korea Computer Congress (KCC), 2014.

107

