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Abstract. During the excavation of rock mass with the method of drill and blast, the release of in-situ 
stress, also known as excavation load on boundary, is traditional a dynamic process, so the inertia and 
all other dynamic responses induced by the release of in-situ stress cannot be ignored. Compared with 
corresponding quasi-static unloading, dynamic displacement field of surrounding rock is decomposed 
into the quasi-static displacement and the dynamic displacement. Disturbance in the surrounding rock 
increases with a decrease in unloading rate. 

Introduction 
In rock blasting excavation of underground projects, unloading relaxation (stress redistribution) 
process caused by the excavation traditionally lasts for a long time [1]. The throwing motion time is 
about a millisecond to a few hundred milliseconds scale. So, the release of in-situ stress can be seen as 
a dynamic process. Lu et al. [2] employed the theory of stress wave and propagation to analyze the 
movement process of the rock block under the sudden unloading of the initial stress during rock 
excavation by blasting. Yi et al. [3] used numerical method to simulate the high dynamic unloading of 
initial stress during rock excavation. Ren et al. [4] first make real-time CT testing of the meso-damage 
evolution law of the whole failure process of rock in unloading condition using the specified loading 
equipment corresponding to the CT machine developed by the authors in rock mechanics field.  

The indoor test of unloading rate is often low. So, it is cannot correctly simulated the transient 
unloading effect in the process of rock damage on the surface of the situation. We conducted this study 
to show the detailed process of release of hydrostatic in-situ stress accompanying dynamic response of 
the surrounding rock. 
 

Model Establishment 

 

             (a)                                                      (b)                                             (c) 
Fig. 1: The original problem is divided into two sub-problems: (a) the original problem; (b) the first 

sub-problem; (c) the second sub-problem 
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Fig. 2: Function relationship between load and time during excavation process 
 
It is shown from Figure 1 that the circular tunnel is subjected to hydrostatic in situ stress σ∞  at 

infinity. As a results, the dynamic problem can be divided into two sub-problems as shown in Figure 
1(b)-(c).  

As shown in Figure 2, a dynamic pressure can be written as: 
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Excavation of the circular tunnel is axisymmetric problem. Under axisymmetric conditions, the 
stress-strain relations of rock masses is 
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where, rε  and θε  refer to the radial and circumferential direction strain tensor components. 
For isotropic rock materials, Eq.(2) can be rewritten as 
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, E  and µ  are Young’s modulus and 

Poisson’s ratio of the rock masses, respectively . 
The strain-displacement relations in terms of the radial displacement u are 
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The dynamic equilibrium equation can be expressed as follows 
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Using Eqs(2),(4)and(5), the governing equation of radial displacement becomes 
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where, 2
1 /c c ρ=  and ρ is the material density. 

The internal pressure can be expressed as follows: 

( , ) ( )r a t p tσ = , ( ,0) 0u a =  (7) 
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where, ( , )r a tσ and ( ,0)u a are radial stress and initial displacement, respectively.  
The radial dynamic displacement ( , )u r t  can be decomposed into quasi static part ( , )stu r t and 

dynamic part ( , )dyu r t . The quasi static part ( , )stu r t  meets the static equilibrium equations and 
boundary conditions, Dynamic part meets the dynamic balance equation and stress free boundary 
condition.  
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Hydrostatic analysis on the quasi static problem. For the quasi static problem, radial and tangential 
stresses are determined using the elastic mechanical theory as follows 
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Boundary conditions are: 
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The quasi static displacement is  
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where, ( )p t  is the internal pressure. 
 

Dynamic analysis on the dynamic problem. Fluctuation model ( )iU r can be obtained from the 
Eq.(12) [5] 
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The boundary conditions are ( , ) 0r aσ ω =  and ( , ) 0r r arσ ω > = . 
where, 2ω is a nonnegative real number, the general solution is[6] 

( ) ( )qU r D rαε λ=  (13) 
where, 1 2( ) ( ( ) ( ))q q qr J r Y rα α αε λ β λ β λ= + , 1q = , kλ = , 1α = . 1β and 2β  are unknown coefficients 
defined from the boundary conditions.  
Eq. (3) can be written as  
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According to the quality of Bessel functions 
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Eq.(14) can be written as: 
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or: 1 1 2 2( , ) ( ) ( )r r r rσ ω β β= Λ + Λ                                                                                                      (18) 
Eq.(18) takes the following form with boundary conditions: 
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The simple form of Eq.(19) can be rewritten as follows 

0βΛ =
urur r

 (20) 
where, β

ur
is eigenvector and setting 0Λ = .  

Rao[7] had proved that elastomers have countless positive eigenvalues. The roots ( 1, 2,3...)i iω =  of 
Eq.(21) correspond to natural frequencies and the roots are all real and simple. Eq.(21) is calculated 
with Newton-Raphson method.  
In the i-th fluctuation model, function ( )iU r  of iω  can be written as follows 
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1β and 2β are unknown coefficient corresponding to iω , and also used in Eq.(19).  
For the orthogonal condition 
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where, ijδ is Kronecker function.  
According to the orthogonal condition, the coefficient iD  becomes 
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From Eq.(7), Eq.(25) takes the following form 
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According to the orthogonal condition, differential equation of ( )i tψ takes the following form 
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According to the initial boundary condition, initial displacement and initial velocity can be written as 
follows 
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then,  
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Finally,  
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After appropriate calculations, the following expressions for the displacement is written as 
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Results and Analysis. Effects of parameters on the release of in-situ stress of surrounding rock mass 
around a circular tunnel are taken into account. Following computation parameters are used: in-situ 
stress of surrounding rock mass 30MPaσ∞ = , Poisson's ratio 0.3µ = , Elastic modulus 3E GPa= , 
Radius of the tunnel 7a m= , density of surrounding rock mass 2650ρ = , 0t is the unloading 
completion time. 

 
Fig. 3: Displacement curve of the interior                 Fig. 4: Displacement curve of the interior wall of 

the tunnel ( 0 0.5t s= )                                          wall of the tunnel ( 0 0.2t s= ) 
As shown in Figure 3 and Figure 4, the displacement of dynamic problem is bigger than that of 

quasi-static problem. The displacement of dynamic problem is time-sensitive, and then reached a steady 
condition finally.  

The unloading completion time also has large effects on the displacement of dynamic problem. 
While, the displacement of quasi-static problem is not sensitive to the unloading completion time. 
Compared to Figure 3, as the rate of unloading decreases, the disturbance of the interior wall of the 
tunnel increases, as shown in Figure 4. 
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Conclusions 
A new mechanical model is proposed to investigate the dynamic response of the surrounding rock 
masses around a circular tunnel subjected to dynamic unloading. Effects of unloading rate and dynamic 
mechanical parameters of isotropic rock masses on dynamic response of the surrounding rock masses 
around a circular tunnel as well as the total elastic stress field distributions are taken into account. The 
numerical computation is made. It is found from numerical results that:  
(1) The displacement of dynamic problem is bigger than that of quasi-static problem. The displacement 
of dynamic problem is time-sensitive, and then reached a steady condition finally.  
(2) The unloading completion time also has large effects on the displacement of dynamic problem. 
While, the displacement of quasi-static problem is not sensitive to the unloading completion time.  
(3) As the rate of unloading decreases, the disturbance of the interior wall of the tunnel increases. 
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