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Abstract. Effects of aerostatic wind loads on effective elastic modulus and fundamental frequencies 
of stay cables in bridge are studied by finite element method (FEM). Dynamic responses of stay 
cables under supports’ excitations are calculated through theoretical method and FEM. Results 
show that the in-plane fundamental frequency of a cable is higher than the corresponding out-plane 
frequency. With external excitations, stay cables can be excited to exhibit large amplitude vibration. 
Parametric vibrations of cables are not perfectly symmetrical about the equilibrium curves. Under 
the combined supports’ excitation and aerostatic wind action, a stay cable will vibrate around its 
deformed curve under self weight and aerostatic load. 

Introduction 
Cable-stayed bridges have undergone rapid developments worldwide, leading to notable progresses. 
Nowadays, the first three longest cable-stayed bridges are Russky Island Bridge in Russia (1104 m), 
Sutong Bridge (1088 m) and Stonecutters Bridge in China (1018 m), respectively. The longest stay 
cables of these bridges are approaching 600 m, which are susceptible to large amplitude vibration 
under external excitations. Cable vibration can be classified into vortex-induced vibration, wake 
galloping, rain-wind induced vibration, and parametric vibration, etc. 

Effective elastic modulus (EEM) and fundamental frequency (FF) of a stay cable are important 
parameters reflecting its nonlinear and dynamic characteristics. In the present paper, the effects of 
aerostatic loads on the effective elastic modulus and fundamental frequency of four cables from 
Sutong Bridge are studied, as well as the dynamic behaviors of cables induced by parametric 
excitations. Both theoretical method and finite element method are used in this paper. 

Basic Information of Stay Cables 
Basic information of the four stay cables studied in the present paper are listed in Table. 1. 

Table 1 Basic information of stay cables 
NO. 

Parameters J12 J19 J26 J34 

Length/[m] 251.2 349.5 454.6 578.6 
Inclined angle/[deg.] 43.89 33.03 26.86 22.65 

Area/[cm2] 62.73 81.2 92.75 120.46 
Initial tension/[kN] 3482 4336 5015 6708 

Mass/[kg/m] 53.2 68.6 77.7 100.8 
Elastic modulus/[GPa] 190 190 190 190 

Elevation/[m] (76.3, 249.4) (77.2, 267.0) (77.8, 282.4) (78.0, 300.0) 

The lengths denote the straight line distances between the two anchoring points on the deck and 
tower; the elevations are the altitudes of two anchoring points. Moreover, supports’ excitations are 
along the straight line connecting the two anchoring points, and defined to be positive in the 
tensioning direction. 
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Effective Elastic Modulus (EEM) and Fundamental Frequency (FF) of Stay Cables 
Finite element analyses are carried out using ANSYS program. The link 10 unit is used to model the 
stay cables with one meter interval. Large deformation effect and stress stiffening effect are 
considered in the finite element analyses. 

EEM and FF of stay cables in wind flows with basic wind speeds of 0 m/s, 50 m/s, and 100 m/s 
are calculated. The wind direction is supposed to be perpendicular to the vertical plane, and the 
calculations are carried out with the following assumptions: 

(1) The two anchoring points keep fixed under self weight and static wind load; 
(2) Wind speed distribution along the vertical height follows the power law index model; 
(3) Drag coefficient of stay cables is 0.7 and the ground surface roughness coefficient is 0.12. 
The calculated EEM of stay cables in wind flows are listed in Table 2. It shows that all EEM of 

the cables are lower than 190GPa that at 0 m/s, which is caused by the sag effect under self weights. 
As wind speed increases, the lateral displacements caused by wind effects also result in nonlinear 
behavior of cables. The EEM of cables are further decreased. 

Table 2 EEM of stay cables at different wind speeds 
wind speed[m/s] 

NO.  0  50  100 

J12 186 185 167 
J19 180 178 156 
J26 173 171 148 
J34 167 164 143 

The FF of cables in wind flows are listed in Table. 3. It shows that the out-plane FF is lower than 
the in-plane FF, and the deviation increases with wind speed. Both out-plane FF and in-plane FF 
increase with wind speed. 

Table 3 FF of stay cables at different wind speeds 
    wind speed[m/s] 

NO. 0  50  100 

J12 
out-plane 0.5124  0.5135  0.5275  
in-plane 0.5175  0.5206  0.5607  

J19 
out-plane 0.3653  0.3665  0.3813  
in-plane 0.3752  0.3786  0.4195  

J26 
out-plane 0.2865  0.2876  0.3018  
in-plane 0.2996  0.3029  0.3410  

J34 
out-plane 0.2314  0.2325  0.2442  
in-plane 0.2468  0.2497  0.2806  

Under the self weight and aerostatic wind load actions, the vertical and lateral deformations of 
stay cables are generated, which change the distribution of internal force of stay cables. Therefore, 
the stiffness and frequencies of in-plane and out-plane vibration are different. Further studies 
indicate that the out-plane FF is lower than the in-plane FF for symmetrical modes of vibration 
while the out-plane FF is higher than the in-plane FF for asymmetrical modes of vibration. For the 
in-plane vibration of a symmetrical mode, the deformation (under self weight and static wind load) 
and vibration displacement are in the same plane. The equilibrium curve of the vibration is the 
deformed curve of the stay cable. The internal force of the stay cable is increased after deformation, 
so the stiffness for in-plane vibration of the cable is higher and the in-plane frequency is higher. 
Such stiffening effect is less significant for the out-plane vibration and the out-plane frequency is 
lower. On the contrary, for the vibrations of asymmetrical modes, the cable has two or more 
sections vibrating around the equilibrium curve in two opposite directions, and the stiffening effect 
of deformation is then weakened. The out-plane vibration is in perpendicular with deformation and 
the effect of deformation on out-plane vibration is not changed between the symmetrical and 
asymmetrical modes. So, the frequency of out-plane mode is higher than that of the in-plane one for 
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the asymmetrical modes. The lateral deformation of a stay cable increases with wind speed. The 
difference between the out-plane and in-plane FF increases with wind speed. 

Responses of Stay Cables under Supports’ Excitation 
Stay cables are prone to vibrate due to the direct loads (wind and/or rain) or excitations of supports 
(deck and/or tower). In recent years, cable vibrations induced by parametric excitations due to deck 
or tower motions were indeed observed in real bridges [1], and several studies have tried to address 
this problem. The conventional approach is to investigate the cable vibration given supports’ 
motions of deck and/or tower. Though the model has some disadvantages, it can predict vibration of 
stay cables with acceptable accuracy. 

A simplified model of a stay cable is shown in Fig. 1. The configuration of stay cable under self 
weight is supposed to be a parabolic curve in the x-y plane. The excitation of deck is supposed to be 
sinusoidal and denoted as Ux=UdsinΩt. The tower is supposed to be static and rigid without loss of 
generality. The equation of vertical motion can be expressed as 

2

2[( )( )] cos y
dy v v vT ds m mg c

s ds s t t
τ θ

∂ ∂ ∂ ∂
+ + = − +

∂ ∂ ∂ ∂                       
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where T is the initial tension of the stay cable and τ is the variation of T; θ is the inclined angle; m 
is the mass of the cable per meter; y is the configuration of the cable under self weight; v is the 
vertical displacement of the cable relative to y; yc is the viscous damping coefficient of vertical 
motion; Ω is the frequency of external excitation, and ω1 is the in-plane FF of the cable. 

 

 
Fig. 1 Simplified model of a stay cable 

 
The Mathieu differential equation is in agreement with the equation in the paper [2]: 
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The displacement responses of cable J34 at ξ=0.001, Ud=0.0001L is calculated by Eq. (2) using 

the fourth-order Runge-Kutta method and is compared to the results from FEM. Responses of J34 at 
Ω/ω1=1 and Ω/ω1=2 are shown in Fig. 2 and Fig. 3, respectively. The displacement is defined to be 
positive downward. It can be concluded that stay cables can be excited into large amplitude 
vibrations by extremely small excitations while the frequency ratio (Ω/ω1) is around 1 or 2. 
Amplitudes in Fig. 2 and Fig. 3 are larger than 6 m. Before reaching the steady state oscillation, the 
amplitude is constantly changing, showing a phenomenon of "flap". The results of Eq. (2) are in 
good agreement with that of FEM, indicating that the model provide good predictions of vibration. 

It is worth noting that the vibration of the stay cable is not perfectly symmetrical about its 
equilibrium curve. The upward amplitude is larger than the downward amplitude. Further studies 
indicate that the asymmetry can be weakened by increasing the inclined angle (from 0 deg. to 90 
deg.) and the vibration is perfectly symmetrical while the inclined angle is 90 deg. It could be 
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inferred that the asymmetry in amplitudes is related to the sag of its equilibrium curve. The 
equilibrium curve of vibration is the deformed curve under self weight. When the cable moves 
downward or upward with a same displacement, the downward displacement produces a greater 
tension force. The tension generated by downward motion is larger than that of the upward motion 
of the same amplitude, which makes it more difficult for the cable to move downwards. 
Consequently, the upward amplitude is larger than the downward amplitude. 
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 (a) Result of Eq. (2)               (b) Result of FEM  
Fig. 2 Comparison of results of Eq. (2) and FEM at ξ=0.001, Ω/ω1=1 and Ud=0.0001L 

0 100 200 300 400 500 600 700 800
-8
-6
-4
-2
0
2
4
6
8

 

D
is

pl
ac

em
en

t/(
m

)

Time/(s)
0 100 200 300 400 500 600 700 800

-8
-6
-4
-2
0
2
4
6
8

 

D
is

pl
ac

em
en

t/(
m

)

Time/(s)  

 (a) Result of Eq. (2)                (b) Result of FEM  
Fig. 3 Comparison of results of Eq. (2) and FEM at ξ=0.001, Ω/ω1=2 and Ud=0.0001L 

To investigate the frequency ratio (Ω/ω1) range of large amplitude parametric vibration 
occurrence and the effects of external excitation strength on resultant vibration amplitudes, the 
dynamic responses of cable J34 are calculated by Eq. (2) using Runge-Kutta method at ξ=0.001, 
Ud=0.0001L, 0.0002L, 0.0003L, and the amplitudes are shown in Fig. 4.  
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Fig. 4 Amplitude of displacement response of J34 with respect to frequency ratio 

It shows that there are three peaks around 0.5, 1 and 2, respectively. The peaks around 1 and 2 
are not exactly at the positions of 1 and 2 but a litter larger than 1 and 2. The phenomenon is in 
agreement with the characteristics of typical nonlinear systems. Moreover, the hysteresis increases 
with the strength of external excitation. The vibration amplitudes at different frequency ratio 
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increase with external excitation amplitudes and frequency ratio range of large amplitude 
parametric vibration occurrence under weaker external excitation is relatively smaller. 

Responses of Stay Cables under Supports’ Excitation and Static Wind Load 
The static wind load (in z direction) is applied to the model in Fig.1 to investigate its effect on 
parametric vibration. The configuration and natural frequency of the cable is changed under static 
wind load. The response of J34 under combined supports’ excitation and static wind load (basic 
wind speeds of 50 m/s and 100 m/s) are calculated by FEM, and the result at the basic wind speed 
of 50 m/s is shown in Fig. 5. It can be seen that the lateral vibration (in z direction) is raised up due 
to the static wind load and shows a phenomenon of "flap" in the same frequency of vertical 
vibration. Further studies indicate that the ratio of vertical displacement and lateral displacement do 
not change over time. It can be concluded that under combined supports’ excitation and static wind 
load, the cable will vibrate around its deformed curve under self weight and static wind load. 

0 100 200 300 400 500
-10
-8
-6
-4
-2
0
2
4
6
8

 

D
isp

la
ce

m
en

t/(
m

)

Time/(s)
0 100 200 300 400 500

-4
-3
-2
-1
0
1
2
3

 

D
is

pl
ac

em
en

t/(
m

)

Time/(s)  

 (a) vertical displacement               (b) lateral displacement 
Fig. 5 Displacement response of J34 at ξ=0.001, Ω/ω1=1, Ud=0.0001L and u=50 m/s 

Conclusions 
The in-plane FF of a stay cable is higher than the out-plane FF, and the difference increases 

with the offset of its deformed configuration from its initial configuration. The dependence of 
vibration amplitude on frequency ratio is slightly hysteretic and the hysteresis effect increases with 
the strength of external excitations. The vibration amplitude at certain frequency ratio increases 
with the strength of external excitations. The frequency ratio range of large amplitude parametric 
vibration occurrence increases with the strength of external excitations. Vibrations of stay cables are 
not perfectly symmetrical about the equilibrium curves and the asymmetry increases with the 
inclined angles of stay cables. Under combined supports’ excitation and static wind load, a stay 
cable will vibrate around its deformed curve under self weight and static wind load. 
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