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Abstract. Propagator Method (PM) algorithm is a common method for the estimation of direction 
of arrival (DOA). As PM algorithm has no eigenvalue decomposition of the covariance matrix 
which is needed for MUSIC algorithm, it already has a lower computational complexity relatively. 
In this paper, we proposed a successive DOA estimation based on PM algorithm to lower the 
complexity further. Extensive simulations have been conducted to verify the usefulness of the 
proposed algorithm. 

1.Introduction 
Direction of arrival (DOA) estimation, a key technology in array signal processing, has been 

widely applied in communication, radar, sonar etc.. Recently, two-dimensional (2-D) direction of 
arrival (DOA) estimation for non-uniform L-shaped array has become a hot spot [1-2]. 

An improved PM method [3] for two parallel uniform linear arrays(ULA)[4] improves the 
performance in low SNR. Also, in Ref.[5] a propagator method (PM) based on L-shaped arrays has 
been proposed. However, the eigenvalue decompositions make the eigenvalues arranged arbitrarily. 
Ref.[6] addresses the joint singular value decomposition (SVD) method which can automatically 
pair for 2-D angle estimation, but they are computationally intensive because of using SVD. This 
paper proposes an successive algorithm based on PM algorithm for non-uniform L-shaped array 
which can significantly reduce the computational complexity with an acceptable performance. 
Notations: Lower-case (upper-case) boldface symbols denote vectors (matrices). ( )T• , ( )H• , 1( )−• , 
( )+•  denote the transpose, the conjugate transpose, the inverse and the pseudo inverse, respectively. 

( )E •  denotes the expectation operator. 

2.Data model 

In Fig.1, the non-uniform L-shaped array is composed of two linear subarrays with M and N 

omnidirectional sensors.  

 
Fig.1 Non-uniform L-shaped array model 
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Assuming there are K uncorrelated narrowband far-field signals with the elevation angle kθ  and 

the azimuth angle kφ  of the kth source ( 1,2, , )k K=   impinging on the non-uniform L-shaped 

array. The sensors are located at 1 2[ , , , ]x x xNx d d d=d   in x-axis and 1 2[ , , , ]z z zMz d d d=d   in 

z-axis.  
The received signal of each subarray can be represented as 

( ) ( ) ( )z zt t t= +Z A S N .   (1) 
( ) ( ) ( )x xt t t= +X A S N .  (2) 

where ( ) K Lt C ×∈S , ( ) N L
x t C ×∈N ， ( ) M L

z t C ×∈Ν , 1 1 2 2[ ( , ), ( , ), , ( , )]z z z z K Kθ φ θ φ θ φ=A a a a , 

1 1 2 2[ ( , ), ( , ), , ( , )]x x x x K Kθ φ θ φ θ φ=A a a a , 12 cos / 2 cos /( , ) [ , , ]z k zM kj d j d T
z k k e eπ θ λ π θ λθ φ − −=a  and

12 sin cos / 2 sin cos /( , ) [ , , ]x k k xN k kj d j d T
x k k e eπ θ φ λ π θ φ λθ φ − −=a  . ( )z tN and ( )x tN are additive white Gaussian 

noise vectors whose elements have mean zero and variance 2σ .λ denotes the wavelength. 

3.The successive PM algorithm 
3.1The first one-dimensional search  

The steering matrix zA can be divided as  

1

2
z

 
=  
 

A
A

A
.      (3) 

where 1
K KC ×∈A  and ( -K)

2
M KC ×∈A .  

The propagation operator ( )K M K
z C × −∈P is defined as 

1 2
H

z =P A A .  (4) 

1 1,H H
z M K z− − = = P I A Q A 0 .  (5) 

Partition the extended covariance matrix ( ) ( ) /H
z t t L=R Z Z  as 

z z z=   R G H .  (6) 

where M K
z C ×∈G  and ( )M M K

z C × −∈H , L denotes the number of snapshots. 
Propagation operator can be denoted as  

1ˆ ( )H H
z z z z z

−=P G G G H .  (7) 

So we can obtain 2
ˆ ˆ ,H H

z z M K−
 = − Q P I . 

Considering introducing ˆ
zQ  into the projection operator of the noise subspace, we replace it 

with its orthogonalized matrix 1/2
0

ˆ ˆ ˆ ˆ( )H
z z z z

−=Q Q Q Q  and we can also get 0
ˆ ( )H

z z θ =Q a 0 .Thus the 

pseudo spectrum function is given by 

0 0( ) ( ) ( )H H
z k z k z z z kf θ θ θ= a Q Q a .  (8) 

where 1 22 cos / 2 cos / 2 cos /( ) [ , , , ]z k z k zM kj d j d j d T
z k e e eπ θ λ π θ λ π θ λθ − − −=a  . 

By one-dimensional searching, the initial estimation of elevation angle 1 2
ˆ ˆ ˆ ˆ[ , , , ]ini i i iKθ θ θ=θ   can 

be obtained. 
3.2 The second one-dimensional search 

In this section, we utilize the L-shaped array to implement the second one-dimensional search 
with the initial estimation of elevation angle in 3.1. Partition the steering matrix [ ; ]xz x z=A A A  as  
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3

4
xz

 
=  
 

A
A

A
.  (9) 

where 3
K KC ×∈A  and ( -K)

4
M N KC + ×∈A .  

The propagation operator ( )K M N K
xz C × + −∈P is defined as 

3 3,  H H
xz M N K xz+ − − = = P I A Q A 0 .  (10) 

The extended covariance matrix xzR  can be divided as 

( ) ( )
/ [ , ]

( ) ( )

H

xz xz xz

t t
L

t t
   

= =   
   

X X
R G H

Z Z
.  (11) 

where ( )M N K
xz C + ×∈G  and ( ) ( )M N M N K

xz C + × + −∈H . 

Propagation operator can be estimated by 
1ˆ ( )H H

xz xz xz xz xz
−=P G G G H .  (12) 

Then we can get ˆ ˆ ,H H
xz xz M N K+ −

 = − Q P I .  

We replace it with its orthogonalized matrix 1/2
0

ˆ ˆ ˆ ˆ( )H
xz xz xz xz

−=Q Q Q Q . Then construct the pseudo 

spectrum function as 

1 0 0
ˆ ˆ ˆ( , ) ( , ) ( , )H H

x z in k xz in k xz xz xz in kf θ f θ f θ f= a Q Q a .  (13) 

where 
ˆ( , )ˆ( , )
ˆ( , )

x in k
xz in k

z in k

θ φ
θ φ

θ φ

 
=  
  

a
a

a
 and ˆ ˆ

in iniθ ∈θ . 

By one-dimensional search via kφ , we can get the estimation of azimuth angle 1 2
ˆ ˆ ˆˆ [ , , , ]Kφ φ φ=Φ  . 

3.3 The third one-dimensional search 

Through the estimation of azimuth angle in 3.2, we can achieve the third one-dimensional 

search. The spatial spectrum function should be rewritten as 

2 0 0
ˆ ˆ ˆ( , ) ( , ) ( , )H H

xz k n xz k n xz xz xz k nf θ f θ f θ f= a Q Q a .   (14) 

where 
ˆ( , )ˆ( , )
ˆ( , )

x k n
xz k n

z k n

θ φ
θ φ

θ φ

 
=  
  

a
a

a
 and ˆ ˆ

nφ ∈Φ . 

Then the second estimation of elevation angle sec 1 2
ˆ ˆ ˆ ˆ[ , , , ]s s sKθ θ θ=θ   can be obtained by 

one-dimensional search viaθ .  

3.4 Analysis of computational complexity 

The complexity of 2D PM is 2 3( )( ) 2 ( ) 2( )(K M N M N K K M N K M N M N+ + − + + + + + +  
2 3 2

1 2) ( ) ( ) ( )( )K M N K M N L l l M N M N K− + + − + + + + + − and the one of the proposed algorithm 

is 2 2 2 3 22 ( ) 2 ( ) ( ) ( ) ( )( )M L MK KM M K M M K M K M N L K M N M N K+ + − + − + − + + + + + −  
2 3 2 3

1 2 12 ( ) 2 2( )( ) ( ) ( )( )( ) (K M N K M N M N K M N K l l M N M N K l M M+ + + + + + − + + − + + + + − +

)K− , where 1l is the search number of the elevation angle and 2l is the search number of azimuth 

angle. The complexity of the proposed algorithm is greatly lower than that of the 2D PM which is 

illustrated in Fig.2. 
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4.Simulation results 
In this section, we illustrate the performance of the successive PM algorithm for non-uniform 

L-shaped array. Suppose K=2 sources impinging on the array located at 1 1( , ) (20 ,45 )θ φ =   , 

2 2( , )θ φ (40 ,35 )=   . The root mean square error (RMSE) of the estimations is defined as RMSE  

α α
= =

= −∑∑  2
,

1 1

1
( )

S K

k k s
s kSK

 where S  denotes the times of Monte-Carlo simulations and 
,k s

α  is the 

estimation of the kth angle 
k

α  for the sth trial (S=200). 

In Fig.3, we compare the two estimations of elevation angle where M=N=8, L=100. It is indicated 

that the second estimations are more accurate than the first estimations.  
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Fig.2 Comparison of computational           Fig.3 Comparison between the two 

complexity                        estimations of elevation angles 
Then, we change the number of sensors as shown in Fig.4 where L=100. It is clearly indicated 

that the performance of proposed algorithm is getting better and better with the number of the 

sensors increasing because of diversity gain. 
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Fig.4 Performance of proposed algorithm       Fig.5 Performance of proposed algorithm 

with different number of sensors.                with different snapshots. 
We change the number of snapshots, where M=N=8 as shown in Fig.5. It is clearly indicated that 

the performance of the proposed algorithm is getting better and better with L increasing because the 

larger the number of snapshots is, the more accurate the covariance matrix of the received data is. 
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5.Summary 
An effective method based on PM algorithm for non-uniform L-shaped array is proposed. It 

exploited three one-dimensional spectral peak searching to reduce the complexity. The simulation 
results showed that the successive PM algorithm for non-uniform L-shaped array can achieve 
satisfactory performances  
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