

A Load Balancing Model based on Load-aware for Distributed
Controllers

Fengjun Shang, Wenjuan Gong
College of Compute Science and Technology, Chongqing University of Posts and

Telecommunications, Chongqing 400065, China

E-Mail: Shangfj@cupt.edu.cn

Keywords: Software-Defined Networking; Load-aware; Load Balancing; Failure Recovery

Abstract. Software-Defined Networking (SDN) is a new paradigm that decouples the control plane
from data plane. But with the continuous expansion of the network scale, a single controller faces
with scalability issues and may trigger a single point of failure. It is important to take into account the
scalability of the control plane and how to balance the load of multiple controllers. In this paper, we
study and analyzed the architecture model of multiple controllers and then proposed a load balancing
model based on load-aware for distributed controllers which can flexibly adjust the flow-requests
handled by each controller based on the flow-request, and resolved the single point of failure through
fast recovery of failure.

Introduction

Recently with the continuous expanding of network scale and the increasing of network
interconnection equipment and classes, traditional Internet faces many challenges such as
controllability of management、scalability of scale and validation of innovative experiments[1].
Software-Defined Networking (SDN) architecture is currently seen as one of the most promising
paradigm where the network control is decoupled from data plane. Control plane is consisted of a
logically centralized controller which is responsible for making packet forwarding decisions and
providing a programmatic interface to the application plane. Data plane, which is responsible for
forwarding packets, is composed of physical devices. In the SDN architecture, the data plane is
controlled by the control plane through a well-defined API. SDN has already some concrete
implementations. OpenFlow [2] is an open standard protocol, specifically designed for the SDN
networks, that allows the communication between the control and data planes and permits the
manipulation of the latter. At the beginning, the OpenFlow protocol was developed at the Stanford
University around 2008 for enabling researchers to run experimental protocols in the campus
networks, but now has received wide attention from academia and industry.

In SDN architecture based on OpenFlow, the OpenFlow switches send flow-requests to the
controller via the OpenFlow protocol over a secure channel and the controller sets packet forwarding
rules to switches via a global view of the network. The centralized control function of SDN has
reduced the complexity of network management and configuration, but with the continuous
expanding of network scale and increasing demand for services, the centralized controller needs to
deal with massive flow-requests from switches and the scalability problem of control plane is
becoming more and more serious [3]. The paper [4] points out that the NOX controller can handle
30K flow every second and each flow needs an average of 10ms [5], however the data center
including 100 switches can generate 10M flow-requests every second which exceed the capability of
controller [6]. So researchers has proposed many architecture models of distributed controller. In
2010 the paper [3] proposed a distribution of control plane called HyperFlow. HyperFlow is logically
centralized but physically distributed. By passively synchronizing network-wide views of OpenFlow
controllers, the switch is connected to the nearest controller, thus minimizing the control plane
response time to data plane requests. The paper [7] present Onix, a distributed system based on
control plane. Control planes written within Onix operate on a global view of the network, and use

4th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2016)

© 2016. The authors - Published by Atlantis Press 240

basic state distribution primitives provided by the platform. Onix provides a general API for control
plane implementations, while allowing them to make their own trade-offs among consistency,
durability, and scalability. In 2012, the paper [8] designed a high scalable mechanism named MSDN
to balance the data flow initialization requests and then those requests were parallel processed with a
share global network view. In the same year, Yannan Hu proposed BalanceFlow [9], a controller load
balancing architecture for OpenFlow networks with by utilizing CONTROLLER X action extension
for OpenFlow switches. The “super controller” can flexibly tune the flow-requests handled by each
controller, without introducing unacceptable propagation latencies architecture.

The Load Balancing Model based on Load-aware for Distributed Controllers

BalanceFlow architecture [9] used “super controller” to run flow-requests partition when
controller load imbalance is detected. Once the “super controller” has a fault, the flow-requests
partition function would be disable. So to resolve the above problem, we present the load balancing
model based on load-aware for distributed controllers. In the model, each switch connects with
multiple controllers but at any moment is controlled by only one controller. And one controller can
manage more than one switch. All controllers are of the same performance without “super controller”,
so the model resolves the problem of single point failure, improves the stability of the network;
meanwhile we propose load balancing algorithm based on load-aware random assignment that
ensures that the network does not trigger a larger tilt when partitions the flow-requests. Besides in
order to detect the failure of the controller, the controller will send heartbeat packets to each other. If
a controller dos not sent a heartbeat packet in the specified time, then the other controllers deem that
the controller has failed and will immediately run the load balancing algorithm to partition the
flow-requests. The architecture model is shown in Fig.1.

Fig.1 The Load Balancing Model Based on Load-aware For Distributed Controllers

Load Information Awareness.
In the load balancing model presented by this paper, the load information of the controller is

mapped to the average number of flow-requests handled by it. The load information awareness points
out that each controller can aware the load status autonomously through calculating the ratio of
average number of flow-requests to the total number of flow-requests in the network. And using the
flow-requests based on switch pairs is viable since the total number of switch pairs is usually limited
with less storage space.

So every controller maintains an *N N order matrix avgQ which represents the load information of

controller, where N is the number of switches in the network. The element in the ith row,
jth column denotes the average number of flow-requests from switch i to switch j . When a

241

controller receives a flow-request, it checks the destination address and source address and locates
the corresponding egress switch for that flow and the relevant element in the matrix is updated
periodically. The average number of flow-requests from switch i to switch j is calculated using the
following Eq. 1.
 (,) (1) (,) (,)   avg preq i j q i j p i j (1)

Where  is a weighted coefficient, (,)preq i j is the average flow-requests number of previous cycle

and (,)p i j is the number of flow-requests from switch i to switch j in a certain cycle.
Load Balancing Algorithm based on Load-aware Random Assignment.
This paper proposes the load balancing algorithm based on load-aware random assignment where

all controllers publish average flow-requests information to each other periodically, calculate the
total number of flow-requests. If the average number of flow-requests handled by any controller
contributes more than some threshold of the total flow-requests rate in the network, the controller will
aware that the load is imbalanced. Then the controller of load imbalance runs the load balancing
algorithm which reallocates flow-requests to multiple controllers via allocation probability.

Related Concept Description.
(1) load degree of switch pair to controller
Firstly we suppose the distributed controller model has k controllers (2k ), ()L s is the ratio

the average number of flow-requests of controller s to the total number of flow-requests
s

Q in the

network
total
R , calculated by Eq. 2.

 () /
s total

L s Q R 1, 2, , s k (2)

So when ()L s exceeds the given threshold, controllers runs the load balancing algorithm. On this
basis, we propose the concept of the load degree of switch pair to controller (,)sL i j , which denotes

the load of switch pair(,)i j to controllers , using the Eq. 3.
 (,) ((,)) / s s totalL i j Q p i j R , 1,2, , i j n (3)

Where (,)p i j is the flow-requests that is about to be handled by the controllers . The algorithm
assumes that every controller has same performance and select average number of flow-requests and
the flow-requests which is about to be handled to measure the load of switch pair(,)i j to controller.

(2) load weight and load difference
We define (,)sW i j as the load weight of switch pair(,)i j to the controllers , using Eq. 3 to

calculate:
 (,) (1) (,) (,) /   s s avgW i j L i j d i s d , 1,2, , i j n , 1, 2, , s k (3)

Where  is a constant parameter, adjusting the weights between controllers’ load and
propagation latencies. When setting  too small, we ignore the benefit of reducing latencies. When
setting too large, however, we do not require the load to be balanced. We empirically found that 

between 0.075 and 0.15 gives a good result. avgd is the average node-to-controller latencies.

Then we define (,) sW i j as the load difference of switch pair (,)i j to the controllers , which

denotes the difference between the sum of all load weights of switch pair (,)i j to controllers and the
load weight of switch pair (,)i j to the controllers , calculated by Eq. 4.

0

(,) (,) (,)


  
k

s c s
c

W i j W i j W i j , 1,2, , i j n 1, 2, , c k (4)

(3) allocation probability of switch pair to controller
We define (,)sP i j as the allocation probability of switch pair (,)i j to the controllers . (,)sP i j

denotes that the probability of flow-requests from switch pair (,)i j allocated to the controller s ,
calculated according to Eq. 5.

242

0

(,) (,) / (,)


  
k

s s c
c

P i j W i j W i j 1, 2, , s k
0

(,) 1



k

s
s

P i j (5)

In order to further reduce the probability of the occurrence of tilt in the network when traffic bursts,
we introduce random probability to divide the flow-requests. Through judging the random number [0,
1] falls on which section of the allocation probability of switch pairs to controllers, select the
corresponding controller.

Procedure of Load Balancing Algorithm based on Load-aware Random Assignment.
After introducing the related concept of algorithm proposed by this paper, the complete operation

process of load balancing algorithm based on load-aware random assignment is as follow:
1) Initializing the network state, divide the switches of the controller management.
2) Setting the controller load imbalance threshold (0.1)* 1  k .
3) Controllers update the respective average flow-requests matrix every cycle mT .

4) Controllers send the respective average flow-request information to each other every cycleT .
Calculate ()L s of each controller. When () L s , the controller occurs load imbalance, runs the
load balancing algorithm, then skips to step 5; when () L s , the distributed controller system is
in a state of balancing and skips to step 3.

5) Calculate allocation probability of switch pair (,)i j to the controllers , (,)sP i j . Then repartition

flow-requests from switch pair (,)i j to specified controller according to (,)sP i j via random

probability.

Evaluation

In order to verify the feasibility of our distributed controller model, we built an experimental
environment. We evaluate our model on Abilene topology, which contains 10 nodes and 13 links. In
our experimental, each switch connects ten hosts and three controllers (denotes as A, B and C for
simplicity in illustrating) are deployed in the network. We set mT to 10ms and T to 1s and the

controller load imbalance threshold is calculated according the number of controllers. The initial
status of the network is shown in Fig.1. The default behavior of each switch is to forward its
flow-requests to the nearest controller to achieve quick response, so controller A, B and C will
receive the flow-requests from 4, 3 and 3 switches respectively. At time 0 second, we assume that the
network has been in a basic steady status. Each host starts to send a packet flow to a randomly-chosen
host. After that a host randomly waits between 1 and 10ms before sending a new flow. At time 40
seconds, we intentionally increase the load of controller A (by raising the rate of sending new flows
which are handled by controller A). We repeated the test 20 times, and Fig.2 (a) plots the average load
of the three controllers over time when all controllers are running normally, Fig.2 (b) plots the
average load of the three controllers over time when some controller malfunctions.

0 10 20 30 40 50 60 70 80 90 100
1400

1600

1800

2000

2200

2400

2600

Time(s)A
ve

ra
ge

 n
um

be
r

of
 fl

ow
-r

eq
ue

st
s

to
 c

on
tr

ol
le

rs

Controller A

Controller B
Controller C

0 10 20 30 40 50 60 70 80 90 100

1200

1400

1600

1800

2000

2200

2400

2600

Time(s)A
ve

ra
ge

 n
um

be
r

of
 fl

ow
-r

eq
ue

st
s

to
 c

on
tr

ol
le

rs

Controller A

Controller B

Controller C

(a) All controllers are running normally (b) some controller is broken

Fig.2 the average number of flow-requests handled by three controllers

243

According Fig.2, we can see, that as the hosts start sending traffic, the average flow-requests
received by each controller ramp up, the division of load is relatively close to the 4:3:3. In Fig.2
(a),After 20 senconds, as expected, the load on controller A increases draamatically, and at time 44
second the load of controller A exceeds the controller load imbalance theshold 45%, so controller A
runs the load balancing algorithm to reallocate the flow-requests. And then the load of each controller
is well under imbalance triggering threshold. In Fig.2 (b), at time 40 second, the controller C is
broken, so after 3 cycles of updating, the load balancing is invoked immediately and reallocate
flow-requests to controller A and B. Then the load of the rest of controllers is well under imbalance
triggering threshold.

Conclusions

This paper analyzes the scalability problem of SDN architecture and studies the architecture
models of multiple controllers. And then propose a load balancing model based on load-aware for
distributed controllers which can runs the load balancing algorithm to reallocate the load of each
controller. Our experiment shows that the model can flexibly adjust the load of each controller and
succeed in avoiding the single point of failure and guarantee that the function of load balancing
algorithm is run normally whether controller has fault or not.

Acknowledgements

This work was supported in part by the Chongqing Natural Science Foundation under Grant
No.cstc2012jjA40038, the Chongqing Basic and Frontier Research Project under Grant
No.cstc2013jcyjA40023, the Ministry of Industry and Information Technology for the special fundes
of Development of the Internet of things(2012-583) and the Special Foundation for Young Scientists
of Chongqing(NO.cstc2014kjrc-qnrc40002).

References

[1]Zhang C K, Yong C, Tang H Y, et al. State-of-the-art survey on software-defined networking
(SDN) [J]. Journal of Software, 2015.

[2] Mckeown N, Anderson T, Balakrishnan H, et al. OpenFlow: Enabling Innovation in Campus
Networks[J]. Acm Sigcomm Computer Communication Review, 2008, 38(2):69-74.

[3] Tootoonchian A, Ganjali Y. HyperFlow: a distributed control plane for OpenFlow[C]//
Proceedings of the 2010 internet network management conference on Research on enterprise
networking. USENIX Association, 2010:3-3.

[4] Gude N, Koponen T, Pettit J, et al. NOX: Towards an operating system for networks[J]. Acm
Sigcomm Computer Communication Review, 2008, 38(3):105-110.

[5] Tavakoli A, Casado M, Koponen T, et al. Applying NOX to the Data center[J]. Hotnets, 2009.

[6] Curtis A R, Mogul J C, Tourrilhes J, et al. Devoflow: Scaling flow management for
high-performance networks[J]. Acm Sigcomm, 2011, 41(4):254-265.

[7] Koponen T, Casado M, Gude N, et al. Onix: A Distributed Control Platform for Large-scale
Production Networks.[J]. Proc Osdi, 2010:351-364.

[8] LIN Pingping, BI Jun, HU Hongyu, JIANG Xiaoke. MSDN:a Mechanism for Scalable
Intra-domain Control Plane in SDN[J].Journal of Chinese Computer Systems,2013,34(9):1969-1974.

[9] Hu Y, Wang W, Gong X, et al. BalanceFlow: Controller load balancing for OpenFlow
networks[C]// Cloud Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd International
Conference on. IEEE, 2012:780-785.

244

