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Abstract. The frequency estimation of sinusoidal signal based on discrete fourier transform (DFT)  is 
investigated, which performance is caused to decline due to the error of interpolation direction when 
the signal frequency is close to quantized frequency of DFT. To solve this problem, a new algorithm 
without weighting window is proposed. Firstly, a coarse frequency estimation in DFT spectrum is 
acquired, then a high-accuracy frequency near the coarse frequency by iterative interpolation is 
estimated. The simulation results show that errors caused by a mistaken location of the spectral line 
can be significantly reduced and the algorithm is simple and has good performance in mean square 
error and accuracy. 

1. Introduction 

The frequency estimation of sinusoidal signal which is submerged in the noise, whether in theory 
or in practice, is a topic of great research value. Many scholars at home and abroad have done a lot of 
research on this problem, and put forward many methods in time domain and in frequency domain. 
Because of FFT fast algorithms, the spectral analysis method based on DFT is especially suitable for 
real-time signal processing. Unfortunately,their estimation accuracy is affected by two drawbacks:the 
spectral leakage and the picket-fence, even if there is no noise, the sinusoidal signal spectrum is 
leaking when the sampling frequency is not an integer multiple of DFT frequency resolution, the real 
frequency of signal falls between two discrete FFT spectral lines, resulting in frequency estimation 
can not meet the accuracy requirements and various interpolation strategy emerged. the frequency 
estimation of sinusoidal signal based on FFT is currently divided into two processes: rough 
estimation and precise estimation. Coarse estimation is accomplished by directly observing the 
maximum FFT amplitude spectrum. The precise estimation based on the line spectrum of sinusoidal 
signal by some interpolation strategies, can estimate sinusoidal signals accurately. 

Rife etal. [1] proposed a frequency estimator based on the modulus of two FFT spectral lines,but 
the Rife‘s algorithm can easily lead to errors in the second spectral line which leads to the error of 
interpolation. To solve the problem,the algorithm with weighting window was investigated. Jain etal. 
[2] investigated the problem for the rectangle window. Later, it was extended for the Hanning 
window [3] and for Rife–Vincent class I windows [4]. the same idea with a different explanation was 
developed by Xie and Ding in [5], in which both rectangle window and Hanning window were 
studied. Similar estimators were explored for Hanning-windowed data[6]. The estimators were 
further improved and extended for decaying sinusoids or exponentials [7–9]. The Kasier–Bessel and 
Dolph–Chebyshev windows are known for superior performance in multitone detection[10]. 
Frequency estimation of the weighted real tones [11]. 

Because the signal to noise ratio (SNR) is related to the length of the data,however,the weighting 
window will cause the signal length to be shortened, and then reduce the SNR. 

The purpose of this paper is to present an iterative DFT interpola-tion algorithm without weighting 
window that can accurately estimate frequency in a discrete spectrum and incorrect polarity 
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estimation can almost be completely avoided in the proposed algorithm. the remainder of the paper is 
organized as follows: in section 2 summary of analytic DFT interpolation formulas is briefly 
described. the analytical expression for the proposed frequency estimator is derived in Section 3. the 
accuracies of the derived expressions are verified through computer simulations in section 4. 
conclusions are given in section 5. 

2. Theoretical background 
The frequency estimation of discrete sinusoidal signal can be modeled as: 

                                            )()/2cos()( 00 nvNnTfans ++= θπ  .                                                  (1) 
where a  is amplitude, 0f  is frequency, 0θ  is the phase angle , T  is the sampling time interval and 

n  is the sample index, )(nv  may be assumed to be additive white gaussian noise with zero mean and 
a variance of  2

nσ . 
Based on the DFT definition, the DFT coefficients )(kS can be computed by 

)()()(
1

0

2

kVenskS
N

n

kn
N

j
+⋅= ∑

−

=

−
π

, 10 −≤≤ Nk .                                        (2) 

)(kV is the DFT of )(nv .in view of the symmetry of real sequences, the negative rate components 
of DFT spectrum are neglected, and only the front N/2 points of the discrete spectrum are considered. 
the )(kS  can also be described as: 
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Maximum value of )(kS can be noted by approximately: 
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 where  1k  is the index value at the maximum of  )(kS and ]int[ 01 Tfk =  ,int[y] represents an 
integer closest to y, 10 kTf −=δ , 1B is the maximum of  )(kS .if 2k is the index of the second largest 
bin of )(kS ,then 112 += kk or 112 −= kk . the second largest bin can be noted by approximately: 
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the ratio of the two largest magnitudes is expressed as 
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according to the ratio of 2B to 1B , δ̂  can be expressed as 
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if the index of the second largest bin is 11 +k , then 0ˆ >δ . if the index of the second largest bin is 
11 −k , then 0ˆ <δ . if signal-to-noise ratio (SNR) is well above the so-called “threshold”[12], the 

precise frequency estimation can be computed by 
Tkf )( 1 δ


+=                                                                           (8) 
Eq.(7) shows that the δ



 depends on the second largest magnitude of )(kS . when δ


 is near zero, 
correctly locating the correct spectral line is often difficult because of wideband noise or spectral 
leakage. as a result, some methods could be applied to solve this problem by weighting window such 
as Hamming window, Kasier–Bessel windows, Dolph–Chebyshev windows etal. however, it would 
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reduce the SNR at the same time. The aim of this paper is to present an iterative DFT interpolation 
algorithm without weighting window that can accurately estimate frequency in a discrete spectrum. 

3. Proposed algorithm 

In Section2, Eq.(8) shows that the f


 is easy to be affected by the index of the second largest bin. 
in order to avoid incorrect polarity estimation, the paper proposed a novel algorithm which just need 
to find the maximum value in a discrete spectrum, the specific steps are as follows: 

Step 1: From Eq.(4), acquire the maximum at time index 1k , )( 1kS .the original frequency must 
locate in [ ]5.0,5.0 11 +− kk .                                       

Step 2: Apply the parameters obtained from Step 1 to the following fomula (9) as  

)()(),( 1

1

0

)
2

1(2

1
1 kVensrkS

N

n

nr
M

k
N

j
+⋅= ∑

−

=

+−
π

                                            (9) 

Where M is an arbitrary natural number except zero, r  is an arbitrary integer which locate in 
[ ]MM ,− . maximum value of ),( 1 rkS can be noted by approximately: 
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Step 3: Apply the parameters obtained from Step 2 to the following fomula (11) as  
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Where P is an arbitrary natural number except zero, ξ  is an arbitrary integer which locate in 
[ ]PP,− . maximum value of ),( 2 ξkS can be noted by approximately: 
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Step 4: Estimate the frequency using the following Eq.(13) as 

Tkf 3=


                                                                                   (13) 
In theory, with the increase of M  or P , the frequency estimation is becoming more and more 

accurate. however, considering the amount of calculation, the M  or P  should not be too large. 
morever, if SNR is too low, the largest magnitude may be badly distorted by noise, when the M  or 
P  increases to a certian value, the performance of frequency estimation has remained constant.  

4. Simulation results 
In this section the accuracies of expressions (13) are firstly verified by means of computer 

simulations. Then, the accuracies of the proposed procedure, L&Z&M’s algorithm [11],the classical 
Rife’s  method [12] are compared through both computer simulations and experimental results. It is 
worth noticing that in [11] it has been shown that the L&Z&M’s algorithm provides more accurate 
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frequency estimates than previous algorithms. as a basis for comparison, the CramerRao bound (CRB) 
[1] is given by  
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Where N  represents the number of samples.the simulation was performed with additional white 
gaussian noise, Phase was set to zero,The number of samples was 512 and the sampling rate was 
1000Hz. 

When the estimated freqency is 250Hz( 0f =250Hz), Fig.1 shows the performance of frequency 
estimation in different SNR.  from the simulation results, the performance of frequency estimation is 
improved with the increase of M. in practice, the bigger M or P has led to a large amount of 
calculation, so a trade-off must be considered between the performance and the calculation. Fig.2 
indicates the performane of the proposed algorith approachs to the CramerRao low bound[1] when 
the SNR is above zero. 
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Fig.1. The estimate frequency  vs. SNR .           Fig.2. The variances of frequency  vs. SNR 

Table 1. RMSE of frequency estimation vs. the input signal frequency by using Rife’s method, 
L&Z&M’s algorithm with weighting Hanning window and The proposed algorithm in this paper 

(where M =8, P =4) . 

0f (Hz) δ~  
Rife’s method 

L&Z&M’s algorithm 
with weighting 

Hanning window 
The proposed algorithm 

0f (Hz) fσ (Hz) 0f (Hz) fσ (Hz) 0f (Hz) fσ (Hz) 
249.0234 -0.5 249.0485 0.01698 249.0267 0.01697 249.0271 0.01688 
249.2188 -0.4 249.2430 0.01709 249.2322 0.01699 249.2177 0.01689 
249.4141 -0.3 249.4542 0.01894 249.4108 0.01715 249.4182 0.01712 
249.6094 -0.2 249.6402 0.09627 249.6312 0.01692 249.6203 0.01691 
249.8047 -0.1 249.8237 0.1131 249.8126 0.01734 249.8063 0.01692 
250.0000 0 249.9001 0.1083 249.9758 0.01694 250.0013 0.01697 
250.1953 0.1 250.2103 0.1174 250.0958 0.01746 250.2001 0.01689 
250.3906 0.2 250.3875 0.09971 250.2879 0.01719 250.3925 0.01698 
250.5859 0.3 250.5924 0.01841 250.5968 0.01704 250.5932 0.01693 
250.7813 0.4 250.7781 0.01785 250.8003 0.01754 250.7892 0.01691 
250.9766 0.5 250.9124 0.01694 250.9598 0.01761 250.9801 0.01695 

 
In table 1.  The frequency was deternmined by ff ∆⋅+= δ~2500 , where f∆  represented the 

frequency resolution ( Nff s /=∆ ),δ~ is located in [ ]5.0,5.0 +− . The frequency 0f  varies between 
249.0234 Hz and250.9766Hz with a step of 1.953125Hz. The SNR is 9dB and the CRBσ  is about 
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0.0169 (Hz). in the Rife’s method, when theδ~  is close to zero, incorrect polarity estimation (IPE) 
could lead to inproper estimation, however, which can almost be completely avoided in the proposed 
algorithm. Comparing with the Rife’s method and the L&Z&M’s algorithm, the proposed algorithm  
has better performance. 

5. Conclusion 
This paper proposed an iterative DFT interpolation algorithm without weighting window that can 

accurately estimate frequency in a discrete spectrum. Simulation results show that the proposed 
algorithm is robust against mistaken location of the spectral line, and has good performance when the 
SNR is above zero. In future research, we will try to eliminate noise to further improve the 
performance when the SNR is below zero. 
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