
Multi-keyword Ranked Search with Fine-grained Access Control over 
Encrypted Cloud Data 

Jingyu Lei1,2, a, Jiao Mo1, b  

1School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 
2State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and 

Telecommunications, Beijing 100876, China. 
aleijingyu2015@163.com, bpridenope@gmail.com 

Keywords: multi-keyword search, access control, privacy-preserving, cloud computing 

Abstract. With the development of cloud computing, people have become accustomed to using 
these cheap and convenient services provided by the cloud server for data storage and processing. 
For protecting data privacy from leaking information to unauthorized users, probably including the 
cloud service provider (CSP), the data must be stored in an encrypted form before outsourcing, 
which leads to some traditional data services being unavailable, for example, data search. Therefore, 
to design a privacy-preserving data search scheme is an extremely challenging problem. Meanwhile 
in order to keep data from using (and even searching) by unauthorized users, it also needs to make 
sure that the search scheme could achieve fine-grained access control on data users, according to the 
access policies made by the date owner (DO).In this paper, considering both the control of user's 
access authority and the privacy protection in data search, we have designed a multi-keyword 
searchable scheme with access control over encrypted cloud data. By using the technology of 
inverted indexes, we can rapidly filter out data files that users own authority to access, while 
methods of coordinate matching and secure inner product computation have also been introduced to 
realize the privacy-preserving multi-keyword search. Through analysis of privacy and efficiency, 
we prove that our scheme achieves the requirements of privacy protection under two different 
adversary models, and that it has relatively high efficiency from the perspective of time complexity. 

1. Introduction 
With the advent of cloud computing, more and more enterprises and individuals outsource data 

to the cloud, and use services provided by CSP, such as data storage, information search, or 
outsourced calculation [1]. However, cloud computing has also brought new security risks with data 
far from DO's physical control after stored in the cloud server, so it’s difficult to protect their 
confidentiality and privacy. For some sensitive datas, the leak will cause huge losses. Therefore, 
many data owners choose to encrypt datas before outsourcing, rather than in the form of plaintext. It 
is a challenge to design a privacy-preserving data searchable scheme.  

In general, users always would like to select out the most relevant documents through a simple 
query in massive files. Under the commercial cloud computing model of "pay as you use" [2], it 
becomes more important to achieve accurate and efficient data search. In addition, even if the 
dataset is outsourced by same DO, the attributes of the user community of  DO target are likely to 
be different (for example, for the outsourced dataset of an enterprise, the settings of access 
permission for different departments, or different levels of the same department, are not the same). 
This requires the search service only to return the most relevant documents that user own authority 
to access responding to his query, according to the access authorities set by DO for different files. 
On the one hand, this can realize a more fine-grained access control of DO, on the other hand, this 
also could save the computational cost of CSP to some extent (obviously, it is meaningless for files 
that users don’t have authority to access to carry out the search operation).  

In 2010, Wang [3] proposed a highly efficient ranked searchable scheme with single keyword, 
which can get discriminating search results when users are searching on the encrypted dataset. 
However, this scheme couldn’t be implemented if user’s query contains multi-keyword, and it is 

4th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2016)

© 2016. The authors - Published by Atlantis Press 454



clear that the latter can improve the accuracy of the query. Later on the basis of Wang, Ning Cao [4] 
proposed a multi-keyword searchable scheme over encrypted data through using “coordinate 
matching” to calculate scores of the query to obtain ranked search results, which has been the most 
mature multi-keyword searchable scheme over encrypted data by far. Then on the basis of Ning Cao 
[4], through improving search algorithm, a lot of work has been done to achieve a more accurate 
and efficient multi-keyword search, which are also the foundation of our scheme in this paper. 
However, these models all assume that the user and DO are in completely trustful relationship, in 
which user could search and access all outsourced files. Once the user generates the trapdoor for the 
search operation under the authorization of DO, then user is able to search all the files he is 
interested in and download them. That is, these schemes couldn’t achieve fine-grained access 
control. 

Some schemes [5], [6] of attribute based encryption (ABE) designed with access control policy 
are based on the user’s attributes, in which DO can set the corresponding access control structures 
related to attributes for each file. Only when the user’s attributes match the access structure of one 
document, then he could successfully decrypt it. This method helps user use access control to 
manage remote encrypted data to a great degree. Based on the similar ideas, Shen et al. [7] designed 
a scheme of keyword search with access control, however the efficiency of HPE they used was 
general, and meanwhile the scheme was not considered in ranking results of search. In addition, the 
general ABE schemes only provided download service, so it was not required for CSP to filter the 
files set in advance. But in our multi-keyword searchable scheme with access control, the efficiency 
of search will be directly related to user’s experience. Therefore, we just learn how to design the 
access structures from these ABE schemes.  

In this paper, we have considered both the control of user's access authority and the privacy 
protection in data search. The basic structure of our scheme is composed of two parts of algorithm: 
filter operation and search operation. Firstly, through the user's attributes authenticated by the 
certification center, CSP filters out the files that user has authority to access, and calculates the 
similarity scores of file indexes and query in the collection of selected documents in accordance 
with the query, then returns the ranked results to user. In order to update attributes and reduce 
computation load of user's decryption in a more convenient way, in system we have selected a 
trusted authentication center (CA), which is responsible for the authentication of attributes. This 
also simplifies our protocol to a certain extent. For different threat models, we have designed two 
schemes. In scheme 1, we firstly develop the respective access policy for each file, and use the 
inverted search to efficiently filter out files that users could access. Further, in order to reduce the 
cost of communication, CSP returns top-k files of the outsourced dataset to user, according to the 
parameter k set by user. In scheme 2, in order to protect the privacy of attributes, the blind of the 
attributes’ values (including access policies of files and user's attributes) is carried out by using hash 
functions and pseudo random functions based on scheme 1, which can achieve the filter operation 
without leaking attributes. Above all, our contributions are as follows, 

1) We propose one kind of efficient and concise scheme about multi-keyword ranked search with 
fine-grained access control, which could save the computational cost of CSP through two layer 
algorithm-- firstly filter operation, then rank operation. 

2) With the blind of access policies of files set by DO and attributes of users, our scheme 
protects the privacy of the users' attributes. 

3) Through analysis of privacy and efficiency, we prove that our scheme meets the requirements 
of privacy protection defined under two different adversary models, and that it has indeed 
introduced low overhead on computation and communication with a relatively higher efficiency 
from the perspective of time complexity.  

2. PROBLEM FORMULATION 
2.1 System Model 

We have designed two different system models based on whether the user is required to protect 
his attributes which are very sensitive to user, such as job, age, health condition, etc. The scheme 1 

455



doesn’t consider protecting the privacy of user’s attributes, while the scheme 2 built on the basis of 
Scheme 1 considers it. Simply, the description of the system model selects the scheme 1 as an 
example. A cloud data hosting service involves four different entities, as illustrated in Fig. 1: the 
data owner, the data user, and the cloud server and the certificate authority. The data owner has a 
collection of data documents F to be outsourced to the cloud server in the encrypted form C. To 
enable the searching capability and set the documents access authority over C for effective data 
utilization and access control, before outsourcing, the data owner will first build a searchable index 
I and access policy P from F, then encrypt I, and finally outsource all the encrypted indexes, 
policies and the encrypted document collection to the cloud server. To search the document 
collection for t given keywords, a user needs to send a search request to CSP, which should contain 
two aspects of information: a corresponding trapdoor TR through search control mechanisms and an 
attribute collection which has been certificated by certificate authority (CA). Upon receiving search 
request from a data user, CSP should firstly filter out the files that user has authority to access 
according to the his attributes, then perform the search operation in the collection of these files, and 
finally return the most relevant top-k ranked results to user. 

 
Fig. 1Architecture of the search over encrypted cloud data in scheme 1 

2.2 Threat Model 
The cloud server is considered as “honest-but-curious” in our model, which is consistent with 

related works on cloud security [8], [9]. Specifically, the cloud server acts in an “honest” fashion 
and correctly follows the designated protocol specification. However, it is “curious” to infer and 
analyze data (including index) in its storage and message flows received during the protocol so as to 
learn additional information. Based on the different degree of privacy protection of data users, we 
consider two kinds of threat models, as follows: 

1) Data users don’t need to protect the privacy of their attributes: data users just don’t want the 
CSP to know their detailed search content, and even the subject of its search.  

2) Data users want to protect their identity attributes: not only protect the privacy of the search 
content, data owners are also not willing to let the cloud service providers know their identity 
attributes (i.e. sex, age, job, etc.), because these informations are likely to be users’ sensitive 
privacy. 
2.3 Design Goals 

∙ Multi-keyword Ranked Search: To design schemes which allow multi-keyword query and 
provide result similarity ranking for effective data retrieval, instead of returning undifferentiated 
results. 

∙ Access Control Search: In order to let the data users can only carry on the multi-keyword 
search in the documents, when the users' identity attributes accord with the access policy of the 
relevant documents, we need to establish a reasonable access control mechanism. 

∙ Privacy-Preserving: To prevent the cloud server from learning additional information from the 
dataset, and to meet privacy requirements specified in section 2.6. 
∙ Efficiency: Above goals on functionality and privacy should be achieved with low 

communication and computation overhead. 

456



2.4 Notations 
∙ F–the plaintext document collection, denoted as a set of N data documents F= (𝐹𝐹1,𝐹𝐹2 … …𝐹𝐹𝑁𝑁).  
∙ C–the encrypted document collection stored in the cloud server, denoted as C= (𝐶𝐶1,𝐶𝐶2 … …𝐶𝐶𝑁𝑁). 
∙ P–the policy collection associated with document collectionF, denoted as P =(𝑃𝑃1,𝑃𝑃2 … …𝑃𝑃𝑁𝑁).  
∙ A–a collection of attributes(i.e. sex, age, job, etc.), denoted as𝐴𝐴 = (𝐴𝐴1,𝐴𝐴2 … …𝐴𝐴𝑚𝑚). 
∙ D–the dictionary, i.e., the keyword set consisting of p keywords denoted as𝐷𝐷 = (𝑑𝑑1,𝑑𝑑2 … …𝑑𝑑𝑝𝑝). 
∙ I–the searchable index, denoted as 𝐼𝐼 = (𝐼𝐼1, 𝐼𝐼2 … … 𝐼𝐼𝑁𝑁) where each subindex 𝐼𝐼𝑖𝑖 is built for𝐹𝐹𝑖𝑖. 
∙ 𝐷𝐷�–the subset of D, representing the keywords in a search request. 
∙ TR–the trapdoor for the search request𝐷𝐷�. 

2.5 Preliminary 
∙ Coordinate Matching 
As a hybrid of conjunctive search and disjunctive search, “coordinate matching” [10] is an 

intermediate similarity measure which uses the number of query keywords appearing inthe 
document to quantify the relevance of that document tothe query. When users know the exact subset 
of the datasetto be retrieved, Boolean queries perform well with the precisesearch requirement 
specified by the user. In cloud computing,however, this is not the practical case, given the huge 
amountof outsourced data. Therefore, it is more flexible for users tospecify a list of keywords 
indicating their interest and retrievethe most relevant documents with a rank order. 

∙ Secure Inner Production 
This algorithm was proposed initially in the secure calculation of kNN [11]. The model extracted 

from the specific environment can be described as follows: we assume that there are two 
participants, player 1 and player 2, while player 1 has a vector 𝐼𝐼 = （𝐼𝐼1, … , 𝐼𝐼𝑝𝑝）and player 2 has a 
vector 𝑄𝑄�⃗ =（𝑞𝑞1, … , 𝑞𝑞𝑝𝑝）. Now it is required to calculate the inner production of  𝐼𝐼 and  𝑄𝑄�⃗  by a 
third-party server C, but the two players are not willing to reveal their privacy to C, so they firstly 
share a key 𝑠𝑠𝑠𝑠 = {𝑠𝑠,𝑀𝑀1,𝑀𝑀2}, where s is a randomly generated p-bit vector donated as 𝑠𝑠 = {0,1}𝑝𝑝, 
and 𝑀𝑀1and 𝑀𝑀2 are two 𝑃𝑃 × 𝑃𝑃 randomly generated invertible matrices. 

Firstly, player 1 uses sk to encrypt vector 𝐼𝐼, and the method is as follows: 
1) According to s, 𝐼𝐼 is split into two random vectors as {𝐼𝐼（1），𝐼𝐼（2）}. Note here that s 

functions as a splitting indicator. Namely, if the q-th bit of s is 0,  
𝐼𝐼（1）[q] = 𝐼𝐼（2）[q] = 𝐼𝐼 [q], q ∈ [1, p] 

If the q-th bit of s is 1, 𝐼𝐼（1）[q] + 𝐼𝐼（2）[q] = 𝐼𝐼 [q] 
2) Using { 𝑀𝑀1,𝑀𝑀2 }, the split data vector pair { 𝐼𝐼（1） ， 𝐼𝐼（2） } is encrypted as 

{𝑀𝑀1
𝑇𝑇 ⋅ 𝐼𝐼（1）,𝑀𝑀2

𝑇𝑇 ⋅ 𝐼𝐼（2）}, which is marked as E( 𝐼𝐼). Then player 1 sends E( 𝐼𝐼) to C. 
Secondly, player 2 similarly use sk to encrypt vector 𝑄𝑄���⃗ , and the method is as follows: 
1) According to s, 𝑄𝑄�⃗  is split into two random vectors as {𝑄𝑄�⃗ （1），𝑄𝑄�⃗ （2）}. Note here that s   

functions as a splitting indicator. Namely, if the q-th bit of s is 0,  
Q��⃗ （1）[q] + Q��⃗ （2）[q] = Q��⃗  [q], q ∈ [1, p] 

If the q-th bit of s is 1, 𝑄𝑄�⃗ （1）[q] = 𝑄𝑄�⃗ （2）[q] = 𝑄𝑄�⃗  [q] 
2) Using { 𝑀𝑀1

−1 , 𝑀𝑀2
−1 }, the split data vector pair { 𝑄𝑄�⃗ （1） ， 𝑄𝑄�⃗ （2） } is encrypted as 

{𝑀𝑀1
−1 ⋅𝑄𝑄�⃗ （1）,𝑀𝑀2

−1 ⋅𝑄𝑄�⃗ （2）}, which is marked as E(𝑄𝑄�⃗ ). Then player 2 sends E(𝑄𝑄�⃗ ) to C. 
Thirdly, C calculates  

𝐸𝐸(𝐼𝐼) ⋅ E(𝑄𝑄�⃗ )={𝑀𝑀1
𝑇𝑇 ⋅ 𝐼𝐼（1）,𝑀𝑀2

𝑇𝑇 ⋅ 𝐼𝐼（2）}⋅{𝑀𝑀1
−1 ⋅ 𝑄𝑄�⃗ （1）,𝑀𝑀2

−1 ⋅ 𝑄𝑄�⃗ （2）}=𝐼𝐼 ⋅ 𝑄𝑄�⃗  

3. Scheme Description 
Scheme 1 :·  
· Setup (1𝜆𝜆): The date owner inputs a secure parameter𝜆𝜆 , outputs a key sk={s,𝑀𝑀1,𝑀𝑀2}, in which 

s is a p-bit binary vector denoted as{0,1}𝑃𝑃, and𝑀𝑀1,𝑀𝑀2 are two 𝑝𝑝 × 𝑝𝑝 random reversible matrixes. 

457



· Upload (F, D, sk):Do uploads the date files being outsourced to the CSP, which can provide 
appropriate search service for the legitimate users. We divide the upload process into three steps:  

1) Indexes Generation: DO extracts keywords for each file in the files set, and generates an 
index set𝐼𝐼 = ｛𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑁𝑁｝for the files set F according to the dictionary D shared within 
system, in which 𝐼𝐼𝑖𝑖is a p-bit binary vector {0,1}𝑃𝑃, while 𝐼𝐼𝑖𝑖[q]=1 indicates that the keyword 
𝑑𝑑𝑞𝑞appears in the file 𝐹𝐹𝑖𝑖, and𝐼𝐼𝑖𝑖[q]=0 indicates that 𝑑𝑑𝑞𝑞doesn’t appear in the file 𝐹𝐹𝑖𝑖. 

2) Index encryption: DO uses the sk to encrypt the index set I, as shown as  I
     𝑠𝑠𝑠𝑠      
�⎯⎯⎯�E(I) . 

In which the encryption algorithm is consistent with that encryption algorithm of security 
inner product calculation about vector（𝐼𝐼1，…𝐼𝐼𝑝𝑝）, and we denote the encrypted indexes set as 
E(I). 

3) Policy formulation: DO sets access policies for each file being outsourced, which can be 
constructed with dendrogram as shown in Fig. 2.  

 
Fig. 2: The four basic dendrograms 

In which 𝑎𝑎𝑖𝑖𝑖𝑖denotes one attribute value, and 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖denotes the file’s ID. After generating 
the policy tree𝑃𝑃𝑖𝑖 for each file𝐹𝐹𝑖𝑖, DO uses symmetric cryptography to encrypt the files set Fas 
C. Then DO uploads the 3-tuple in the form as｛C, E(I)，P｝to the CSP. 

· Pretreatment (P): Based on these access policy trees of each file, CSP generates a 
Attribute-File-List denoted as AFL. AFL is made up of two sets of data, as shown in Table 1. 

Table 1 Attribute-File-List 
Access Policy File’s ID 

𝑎𝑎11 𝐹𝐹𝐹𝐹𝐹𝐹1 
𝑎𝑎21 𝐹𝐹𝐹𝐹𝐹𝐹1 

𝑎𝑎11 ∧ 𝑎𝑎21 𝐹𝐹𝐹𝐹𝐹𝐹2 
(𝑎𝑎11 ∧ 𝑎𝑎21)∨ 𝑎𝑎32 𝐹𝐹𝐹𝐹𝐹𝐹3 
(𝑎𝑎11 ∨ 𝑎𝑎21)∧ 𝑎𝑎32 𝐹𝐹𝐹𝐹𝐹𝐹4 

…… …… 
· TRGen(𝐷𝐷�): The DO inputs the words set 𝐷𝐷� consisted of t keywords to generate the query Q 

which is a p-bit binary vector {0,1}𝑃𝑃 , and 𝑄𝑄[𝑞𝑞] = 1（1 ≤ 𝑞𝑞 ≤ 𝑝𝑝）indicates that the keyword 
𝑑𝑑𝑞𝑞appears in the query, while𝑄𝑄[𝑞𝑞] = 0 indicates that 𝑑𝑑𝑞𝑞doesn’t appear in the query. We assume 
that the data owner has the ability to authenticate user's identity, by which he could share the secret 
key sk with users through the search control mechanism (i.e. broadcast encryption) . In this way, the 
user can use sk to encrypt Q to generate trapdoor, in accordance with method of the secure inner 
product computing about the vector（𝑞𝑞1，…𝑞𝑞𝑝𝑝）. As is shown as Q

     𝑠𝑠𝑠𝑠      
�⎯⎯⎯�TR. 

· Search (𝑈𝑈𝐴𝐴,𝑇𝑇𝑅𝑅): The search process can be composed of the following three steps: 

458



1) Before sending a search request, the user sends his attributes denoted as 𝑈𝑈𝐴𝐴 to the CA(Of 
course𝑈𝑈𝐴𝐴 can also be expressed as the interaction or union of a few attributes, as shown in 
the left column in Table. 1). After identifying the authenticity of𝑈𝑈𝐴𝐴, the CA will sign on it. 
We denote the signature asSign（𝑈𝑈𝐴𝐴）,and return it to user. 

2) The user sends the search request denoted as｛𝑈𝑈𝐴𝐴, Sign（𝑈𝑈𝐴𝐴）, TR｝to the cloud server. 
3) Having received the search request sent from the user, the cloud service provider first verifies 

the authenticity of 𝑈𝑈𝐴𝐴 according to the Sign（𝑈𝑈𝐴𝐴）, as shown in the following equation. 

𝑉𝑉𝑉𝑉𝑉𝑉( 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑈𝑈𝐴𝐴),𝑃𝑃𝑃𝑃𝐶𝐶𝐶𝐶) → �
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓， 

If the authenticity of 𝑈𝑈𝐴𝐴 is validated, according to the prior construction of the AFL, CSP 
could lookup files that the user owns authority to access, and extract the corresponding 
encrypted indexes set E(𝐼𝐼) representing a subset of E(I).Then, CSP uses the trapdoor sent by 
the user and E(𝐼𝐼𝚤𝚤�)（E(𝐼𝐼𝚤𝚤�)∈ E(𝐼𝐼)）to do inner production, then gets the similarity scores, as 
shown as  E(𝐼𝐼𝚤𝚤�) ∙TR={𝑀𝑀1

𝑇𝑇𝐸𝐸(𝐼𝐼𝚤𝚤�)(1),𝑀𝑀2
𝑇𝑇𝐸𝐸(𝐼𝐼𝚤𝚤�)(2)}∙{𝑀𝑀1

−1𝑇𝑇𝑇𝑇(1),𝑀𝑀2
−1𝑇𝑇𝑇𝑇(2)}= 𝐼𝐼𝚤𝚤� ∙ Q 

Through these three steps, we can get the ranked results, according to the correlation degree of 
the search request. Later, the cloud service provider can return the top-k files that are the most 
consistent with the search request to the user based on the parameters k provided in advance by the 
user.  
Scheme 2:  

Through the scheme 1, we find that the whole process not only requires the data owner to 
outsource these access policies, but also requires the user to provide his corresponding identity 
attributes with authentication information. While in real life, users don’t want to expose their own 
identity attributes in many situations. To solve this problem, we use the property of hash function 
and pseudo random function to modify the corresponding protocols in scheme 1, as shown in Fig. 3. 

 
Fig. 3Architecture of the search over encrypted cloud data in scheme 2 

In the Fig. 3, we can see that the function of each entity is similar to that one of the scheme 1, 
while the difference is that the process of protocols is more complex to achieve to protect the 
privacy of user’s identity attributes. Specifically, as is shown with the following five steps: 

· Setup (1𝜆𝜆):Similar to the scheme 1, the data owner generates a key sk for encrypting indexes 
according to security parameter𝜆𝜆. Then data owner selects two secure pseudorandom functions 𝜑𝜑 
and𝜙𝜙, a random variable 𝜀𝜀𝑡𝑡 (𝜀𝜀𝑡𝑡is randomly generated each time for different users or the same user 
about different queries), as well as the system master key msk shared with CA (we assume that the 
CA is completely credible). Meanwhile, data owner sends the tuple (𝜀𝜀𝑡𝑡 , 𝑖𝑖𝑖𝑖𝑢𝑢) to the CSP. 

· Upload (F，D，sk，𝜑𝜑，msk): Same as the scheme 1, the data owner generates the index and 
formulates the access policy for each file, and encrypts files and indexes before outsourcing the data 

459



files, in which the algorithm used is consistent with the scheme 1. The difference is that the data 
owner will no longer upload the access policies of files in plaintext, but use the pseudo random 
function 𝜑𝜑 to generate blinded attributes for all the attribute values that appear in the access 
policies. 

{𝑟𝑟𝑥𝑥}𝑗𝑗 ← 𝜑𝜑(𝑘𝑘||𝑗𝑗, {𝑎𝑎𝑥𝑥}𝑗𝑗), 
In which k is the master key msk; and j is the subscript of the file 𝐹𝐹𝑗𝑗, while {𝑎𝑎𝑥𝑥}𝑗𝑗 denotes a 

collection of attribute values in the access policy 𝑃𝑃𝑗𝑗 set for the file 𝐹𝐹𝑗𝑗 (For example, attribute 
values 𝑎𝑎11 ,𝑎𝑎21 ,𝑎𝑎32  appear in the access policy (𝑎𝑎11 ∧ 𝑎𝑎21)∨ 𝑎𝑎32 , so {𝑎𝑎𝑥𝑥}𝑗𝑗 = {𝑎𝑎11 ,𝑎𝑎21 ,𝑎𝑎32}), 
and{𝑟𝑟𝑥𝑥}𝑗𝑗denotes a collection of the each attribute value in {𝑎𝑎𝑥𝑥}𝑗𝑗 after mapped by the pseudo 
random function 𝜑𝜑. Then the data owner recombines {𝑟𝑟𝑥𝑥}𝑗𝑗 with ANDandOR in logical structures 
according to the access policies, which is denoted as𝑟𝑟𝑗𝑗. Next, he uploads the encrypted files set, the 
encrypted indexes set and the collection of the access policies (denoted as R, R ={𝑟𝑟1, 𝑟𝑟2, . . . , 𝑟𝑟𝑁𝑁}) 
which have been processed with pseudo random function to CSP. Obviously, the adversary can’t 
guess out the access policies in plaintext when he doesn’t know the master key msk. 

· Pretreatment(p):The preprocessing stage is similar to the scheme 1. The difference is that the 
CSP no longer receives access policy trees in plaintext, but access structures formed by random 
values. We denote the collection of access structures corresponding to all the files as R 
={𝑟𝑟1, 𝑟𝑟2, . . . , 𝑟𝑟𝑁𝑁} when 𝑟𝑟𝑗𝑗 corresponds to the file 𝐹𝐹𝑗𝑗, then we can construct a list in which policies 
correspond to files with the same method in accordance with the scheme 1. We denote this list as 
RFL. 

· TRGen (𝐷𝐷�): The generation of trapdoor is in agreement with the scheme 1.  
· Search (𝑈𝑈𝐴𝐴,𝑇𝑇𝑅𝑅):The search process is different with scheme 1. The four steps are as follows: 
1) First, the user sends the search request to DO. After giving the consent, DO sends 𝐻𝐻(𝐼𝐼𝐼𝐼𝑖𝑖 , 𝜀𝜀𝑡𝑡) 

to user whose identity is 𝐼𝐼𝐼𝐼𝑖𝑖 as a search authorization, while 𝜀𝜀𝑡𝑡denotes a random variable. 
2) The user sends his attributes set 𝑈𝑈𝐴𝐴to CA. After the certification of CA,𝑈𝑈𝐴𝐴 is mapped to a 

set of random values by means of a pseudo random function by CA, as shown as 
�𝑈𝑈𝐴𝐴1 ,𝑈𝑈𝐴𝐴2 , … ,𝑈𝑈𝐴𝐴𝑚𝑚�

   𝜑𝜑、 𝑚𝑚𝑚𝑚𝑚𝑚    
�⎯⎯⎯⎯⎯⎯⎯� �𝑟𝑟1‘, 𝑟𝑟2‘, … , 𝑟𝑟𝑚𝑚 ‘�, 

In which 𝑟𝑟𝑥𝑥 ‘ = 𝜑𝜑(𝑘𝑘||𝑖𝑖,𝑈𝑈𝐴𝐴𝑥𝑥), 𝑥𝑥 ∈ [1,𝑚𝑚], m denotes the total number of attribute values of 
one user, and i denotes the subscript of attribute domain 𝐴𝐴i corresponding with the attribute 
value 𝑈𝑈𝐴𝐴𝑥𝑥. We remember 𝑈𝑈𝐴𝐴′ = {𝑟𝑟1′, 𝑟𝑟2′, … , 𝑟𝑟𝑚𝑚′}, then CA sends 𝑈𝑈𝐴𝐴′  to user. 

3) After receiving𝑈𝑈𝐴𝐴′ , through calculating𝐿𝐿 = 𝜙𝜙(𝐻𝐻(𝐼𝐼𝐼𝐼𝑖𝑖 , 𝜀𝜀𝑡𝑡),𝑈𝑈𝐴𝐴′), the user generates a new tuple 
that we remember as L.In which L={𝐿𝐿1,𝐿𝐿2…,𝐿𝐿𝑚𝑚}，𝐿𝐿x = 𝜙𝜙(𝐻𝐻(𝐼𝐼𝐼𝐼𝑖𝑖 , 𝜀𝜀𝑡𝑡), 𝑟𝑟𝑥𝑥′),𝑥𝑥 ∈ [1,𝑚𝑚], finally, 
the user sends the trapdoor and L as the search request to CSP. 

4) The 𝐿𝐿′ is calculated as 𝐿𝐿′ = 𝜙𝜙(𝐻𝐻(𝐼𝐼𝐼𝐼𝑖𝑖 , 𝜀𝜀𝑡𝑡),𝑅𝑅)by using the tuple （𝜀𝜀𝑡𝑡，𝑖𝑖𝑖𝑖𝑢𝑢） received in the 
setup phase and the access control policies R processed by the data owner,  

Then, CSP compares the elements in the same location of 𝐿𝐿′and L. if matching, it can explain 
the data owner meets the access policies in the corresponding RFL. Similarly, CSP first selects the 
files conforming to access policies, and then performs the search operation following the 
multi-keyword search model, finally returns the top-k files that are the most consistent with the 
search request to user. 

4. Security Analysis and Performance Evaluation 
4.1 Privacy Analysis 

Data privacy: For the privacy protection of data files, we use the traditional symmetry secret-key 
encryption technology to encrypt data sets and then upload it to the CSP, so as long as the 
secret-key for encryption is secure, data privacy will not be leaked. We do not consider this in our 
scheme. 

460



Index privacy: The indexes are encrypted by the key sk, and the security of this encryption 
algorithm has been proved to be safe in the known ciphertext model [11], so as long as the sk used 
to encrypt indexes is be leaked, the privacy of the indexes will be safe. 

Trapdoor unlinkable: In the terms of trapdoor, because it is generated from the encrypted query 
made by the user and the encryption algorithm is similar with that one about indexes. In the same 
way we can know the privacy of trapdoor is also safe in the known ciphertext model. Meanwhile, 
because of the randomness of segmentation stage of the query, even for the same two queries 
generated by the same user, their corresponding trapdoors are different in form, however the 
attacker couldn’t distinguish whether any two trapdoors correspond with one query. 

Attribute privacy: In scheme2, the data owners will no longer upload the access policies to CSP 
in the plain text, but they use the pseudo random function to map attribute values of the access 
policies to the meaningless random values for the attackers, then through the “AND “and “OR “ to 
generate new access policies to upload. Similarly, User could add attribute values handled by 
pseudo random function into the search request in the same way, thus CSP will be able to filter out 
files when access policies and user’s attributes have been blinded. Here, the security of attribute 
values is equivalent to the safety of the pseudo random function, so we believe in a secure situation 
of pseudo-random function, the privacy of attribute values is also secure. 
4.2 Efficiency 

We focus on the analysis of the entire scheme from the perspective of time complexity. 
Encrypted Index Construction: From the algorithm of the construction of encrypted index, we 

know that the index encryption of one file is composed of p-step random segmentation and 2 ×
𝑝𝑝2-step multiplication, so the time complexity of the algorithm to encrypt index is O(𝑝𝑝2). We 
assume that DO has N files in total, so the time complexity of DO to encrypt the total indexes set is 
O(N× 𝑝𝑝2). It is thus obvious that the time of the index encryption will increase with the increase of 
numbers of files and the length of the dictionary. In general, the length of the dictionary will be 
bigger than the numbers of files. Considering the influence of the length of dictionary to the time 
complexity is in quadratic level. Therefore, the impact of the increase in the length of the dictionary 
will be much greater than the increase in the number of files on the encryption time.  

Trapdoor Generation: Similarly with the index encryption, because the user only generates one 
query at a time, the time complexity of the corresponding trapdoor based on the query isO(𝑝𝑝2). The 
time is only related to the length of the dictionary. The longer the length of the dictionary is, the 
more time will be needed to generate the trapdoor.. 

File Filter: Without loss of generality, we take scheme 1 as an example, because of the 
difference between two schemes just is using the meaningless random values to replace those 
meaningful attribute value, while the computational efficiency of the comparison operation is 
consistent of the two schemes. Assuming that it takes t moments to compare one attribute of the 
user with one access structure in the left column of the AFL. Then it takes mt moments for us to get 
all of the list of selected files' ID after traversing the whole in the left column of the AFL once, in 
which m denotes the total number of different access policies of DO, so the time complexity of the 
filter operation is O(m). However, if we don't take the method of inverted index to check access 
structures of files in order, it takes Nt moments, in which the N is the total numbers of 
uploaded files, so the time complexity of the filter operation is O(N). Obviously m<N, that is to say, 
the application of the inverted index can improve the efficiency of the filter operation, and the time 
consumption of the filter operation is only related to the total numbers of different 
access policies formulated by DO. 

Search: According to our scheme, the search operation is composed of two processes, similarity 
scores computation and ranking the scores. Among that the similarity scores is obtained by 
calculating inner production of trapdoor and index. We learn that the whole calculation process is 
composed of 2p-step multiplication operations and 2(p-1)+1-step addition operations. Next 
we assume that the number of selected files is N’(N’<=N), so the time complexity of 
ranking operation is O(N’log N’) according to the quick sorting algorithm. In summary, the total 
time complexity of search operation is O(p+ N’log N’). We can find that the time consumption of 

461



the search operation is both related to the numbers of selected files and the length of the 
dictionary. The more selected files and the bigger length of the dictionary, the more time it will 
take. 

In summary, we can list the time complexity at each stage of our scheme, as shown in Table. 2: 
Table 2 Time Complexity at Each Stage 

Stage Time Complexity 
Encrypted Index Construction O(N× 𝑝𝑝2) 

Trapdoor Generation O(𝑝𝑝2) 
File Filter O(m) 

Search O(p+ N’log N’) 
It is found that the time complexity is relatively small for the user to compute in the 

phase of trapdoor generation, which also proves the feasibility of our scheme. And even if the user 
uses a lightweight device, our scheme also has a fairly good usability. 

5. Conclusions 
In this paper, considering both the control of the user's access rights and the privacy protection in 

data retrieval, we have designed two multi-keyword search schemes over the cloud encrypted data 
to achieve fine-grained access control. We develop the respective access policy for each data file in 
the project firstly, and by using the inverted search technology, we can quickly screen out the data 
files that uses own rights to access with the improvement in efficiency. Under two different threat 
models, the two schemes that we have proposed are also based on coordinate matching and secure 
inner product computation technology, which are introduced to realize the privacy preserving multi 
keyword retrieval. Meanwhile, through using hash functions and pseudo random functions to deal 
with the attributes of the plaintext, we achieve the purpose of the security of the policy. Through 
security analysis, privacy protection guarantees of the proposed schemes have been proved, and 
experiments on the real-world dataset further show the proposed schemes indeed introduce low 
overhead on computation and communication, with a relatively higher efficiency. 

Acknowledgments 
This work is supported by NSFC (Grant Nos. 61300181, 61502044), the Fundamental Research 

Funds for the Central Universities (Grant No. 2015RC23). 

References 

[1]. Armbrust M, Fox A, Griffith R, et al. A view of cloud computing [J]. Communications of the 
ACM, 2010, 53(4): 50-58. 

[2]. Cao N, Yu S, Yang Z, et al. LT codes-based secure and reliable cloudstorage 
service[C]//INFOCOM, 2012 Proceedings IEEE. IEEE, 2012:693-701. 

[3]. Wang C, Cao N, Li J, et al. Secure ranked keyword search over encrypted cloud 
data[C]//Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference 
on. IEEE, 2010: 253-262. 

[4]. Cao N, Wang C, Li M, et al. Privacy-preserving multi-keyword ranked search over encrypted 
cloud data [J]. Parallel and Distributed Systems, IEEE Transactions on, 2014, 25(1): 222-233. 

[5]. Goyal V, Pandey O, Sahai A, et al. Attribute-based encryption for fine-grained access control 
of encrypted data[C]//Proceedings of the 13th ACM conference on Computer and 
communications security. Acm, 2006: 89-98. 

[6]. Bethencourt J, Sahai A, Waters B. Ciphertext-policy attribute-based encryption[C]//Security 
and Privacy, 2007. SP'07. IEEE Symposium on. IEEE, 2007: 321-334. 

462



[7]. Shen Z, Shu J, Xue W. Keyword search with access control over encrypted data in cloud 
computing[C]//Quality of Service (IWQoS), 2014 IEEE 22nd International Symposium of. 
IEEE, 2014: 87-92. 

[8]. Yu S, Wang C, Ren K, et al. Achieving secure, scalable, and fine-grained data access control in 
cloud computing[C]//INFOCOM, 2010 Proceedings IEEE. Ieee, 2010: 1-9. 

[9]. Wang C, Wang Q, Ren K, et al. Privacy-preserving public auditing for data storage security in 
cloud computing[C]//INFOCOM, 2010 Proceedings IEEE. Ieee, 2010: 1-9. 

[10]. Witten I H, Moffat A, Bell T C. Managing gigabytes: compressing and indexing 
documents and images [M]. Morgan Kaufmann, 1999. 

[11]. Wong W K, Cheung D W, Kao B, et al. Secure kNN computation on encrypted 
databases[C]//Proceedings of the 2009 ACM SIGMOD International Conference on 
Management of data. ACM, 2009: 139-152. 

463




