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Abstract. In this research work, a novel spatial parallel manipulator with three degrees of freedom 
(DOF) is proposed. The moving platform has two-translation and one-rotational DOFs with respect to 
the fixed base. Based on the position and orientation characteristics (POC) theory, the number of the 
DOF is computed and the output motion characteristics of the parallel mechanism are analyzed. The 
formulas for solving position and orientation of the platform are derived. By using the kinematic 
influence coefficient method, solutions of the forward/inverse velocity and acceleration are derived. 
The virtual prototype model of the 2T1R parallel manipulator is established by use of Pro/E software. 
At last, the position, velocity and acceleration curves are described based on ADAMS software. 

1. Introduction 

Since the limited-DOF parallel mechanisms (PMs) have some advantages in terms of simple 
structure, easy control and low costs, it has been become a hot focus in the fields of international 
mechanisms and robots. Among the limited-DOF PM, the 3-DOF parallel mechanism has been paid 
more attentions, especially 3-DOF spherical and 3-DOF translation PMs, such as Delta robot [1] and 
“agile eye” robot [2]. Spatial parallel mechanism with two-translation and one-rotational (2T1R) 
DOFs, however, has been obtained less attentions in literatures. Hunt [3] proposed the 3-PRS PM in 
1983. Refaat and Herve [4] have synthesized of several spatial mechanism; Zhang [5, 6] presented 
structural synthesis of fully-isotropic 2T1R PM. 

In this paper, a novel 3-DOF parallel mechanism with 2T1R DOFs is presented. Based on the POC 
theory [7], mobility of the mechanism is computed and the output motion characteristics of the 
platform is analyzed. Then the generalized velocity and the acceleration expressions are set up by 
using the kinematic influence coefficient method. The virtual prototype model of the 2T1R parallel 
mechanism is established based on PRO/E software and kinematics simulation is performed by use of 
ADAMS software. 

2. Structure design 

2.1 Constructional design. 
The novel 2T1R parallel mechanism proposed here is shown in Fig. 1.The mechanism consists of 

three chains, a fixed platform and a moving platform. The structure of first chain is R11P12S13 from the 
base to platform in sequence, second chain is R21P22S23, and the third chain is C31P32R33. Here, R, P, S 
and C denote revolute joint, prismatic pair, spherical joint and cylindrical pair, respectively. In the 
first chain, the axis of joint R11 is perpendicular to the central line of joint P12. In the second, the axis 
of R21 is perpendicular to the central line of P22. As for the third chain is concerned, the axis of C31 is 
parallel to the R33 and perpendicular to the central line of P32. In order to achieve the desired output 
characteristics of the mechanism, three chains should meet the following structural conditions: the 
axis of the R11 is parallel to the axis of the R21 and perpendicular to the axis of C31. 
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2.2 Degree of freedom of the parallel mechanism  
In this paper, DOF analysis is performed based on the POC theory. Topological structure of the 

mechanism can be described as follows 
the first chain: soc{-R11⊥ P12-S13-}, 
the second chain: soc{-R21⊥ P22-S23-}, 
the third chain: soc{-C31 ⊥( P32)//R33-}, 
where “soc” means single-opened-chain, ⊥symbol “//” and “ ” denote the axes of the neighboring     

joints being parallel or perpendicular to each other. 
Joints R11, R21 and C31 are mounted on the fixed base. Joints S13, S23 and R33 are attached on the 

moving platform. 
For the first chain and second chain, The POC of end-effector is 
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For the third chain, 
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where Mbi denotes the POC equation of the ith chain, it represent the branched-chain terminal have 

translational degrees of freedom and the number of DOF is i (i=1,2,3). jr stands for the 
branched-chain terminal have rotational freedom and the number of DOF is j (j=1,2,3). 

In order to calculate the DOF of the mechanism, a sub-PM is defined as a mechanism only consists 
of two kinematic chains of the original PM. For the first sub-PM composed of the first chain and 
second chain, its number of displacement equation ξL1 is 
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According to DOF formula proposed by Yang and Sun [8], the DOF of the first sub-PM is  
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where F is the DOF of the mechanism,  fi is the DOF of the ith kinematic pair. So the POC equation of 
the first sub-PM is 

 

Fig.1 Diagram of the novel 2T1R parallel mechanism 
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Similarly, the number of displacement equation ξL2 for another independent closed loop, which is 
composed of the first chain and the third chain, is 
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Complementing Eq. (3) with (6), we obtain  
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Finally, the output characteristics of moving platform can be described as follows 
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Eqs. (7) and (8) show that the number of  DOF of the mechanism is 3 and the moving platform 
moves along x-, z-axis and rotates around x-axis. 

3. Kinematics analysis 

3.1 Position and orientation solutions 
As shown in Fig. 1, the coordinate system O-xyz is fixed to the fixed base where the origin point O 

is located on the midpoint of the side A1A2, x-axis is aligned with the side A1A2, y-axis is parallel to the 
axis of R11, z-axis is defined by the right-hand rule. The moving coordinate system O'-x'y'z' is fixed to 
the moving platform, where the original point O' is located on the midpoint of the side B1B2. Three 
axes, x'-, y'-, z'- axes of the moving frame are parallel to the axes of the fixes frame. OA1=OA2=a, 
O'B1=O'B2=b; distance between the point O to the axis of C31 is d2; O'B3=d1, θ is the attitude angle of 

the moving plating around x-axis.  T=  0 x zT  is the position coordinate of the original point O' . 

Attitude matrix R of the moving platform can be derived as follows 
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(9) 

3.2 Inverse positions solution 
The inverse positions solution of the PM is that finding the input line displacements l1, l2, l3 when the 
coordinate (x,0,z) and attitude angle θ are given. The coordinates of B1 and B2 in the fixed coordinates 

can be computed easily, and  T1 0x b  z B ,  T2 0x b  z B   
According to Eq.(9), the coordinate of point B3 is 

TRBB  O'33                                                                                                                            (10) 

where B3O' is the coordinate in the moving coordinate system 
Substituting the known parameters into Eq. (10), we have 

 T3 1 1cos sinx   r θ  r   θ z B  

According to the constraint of the rod length, the position equation can be gotten. 
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where e a b  . When three independent parameters x, z, θ are given, l1, l2, l3 can be solved. It is 
obvious that the inverse position has only one solution. 
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3.3 Forward position solutions 
The forward position solutions is to define the coordinate x, y, z, of point O' in the moving frame 
when all input displacements of the three actuators, l1, l2, l3 are given. 
From Eq. (11), (12), (13), we obtain 
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Since the structural limitation, sign “  ” in (15) can only be selected sign “+” and sign “  ” should 
be deleted. That is to say, z just has one solution. Thus, when three input parameters l1, l2, l3 are given, 
position parameters x, z and pose angle θ can be solved. The forward position has two solutions. 

From Eqs. (11), (12) and (13), the function relationship between the output and the input 
parameters can be described as  21, llfx  ,  21, llfz  ,  321 ,, lllf . Thus this mechanism has 

weakly coupling property and is easy to complete real-time control. 
3.4 Velocity analysis 

Differentiating Eqs. (11)-(13) with respect to time, then obtain 
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    
111133 ]cossinsincos[)sin( dθθdzθθdRzθdzll                                                          (20) 

Rewriting them as matrix form, have 

dir invJ ν J s                                                                                                                                          (21) 

where T
1 2 3[ , , ]l l l   v represents the output velocity vector of the moving platform and T= [ , , ]x y    s  

represents the input velocity vector of the actuators. While dirJ  and invJ  stand for the direct and the 
inverse Jacobian matrices, respectively, and 
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 where 1 sinm z d   ,  2 1 1cos sinn d d θ )d θ  , 1 2( sin ) cosp z d d    . 

By combining Eq. (21) with Eq. (22), the formulate for solving the inverse/forward velocities are 
derived as follows 
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3.5 Forward acceleration 
According to the second order influence coefficient method [9, 10], the acceleration a is derived as 

below 
Tl l l H J  a                                                                                                                                      (25) 

where “a” is the acceleration vector, it can derived as  Tx z xa ,a ,αa . H represent Hesse matrix, and 
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By substituting Eqs. (26), (27), (28) into Eq. (25), the forward acceleration solutions will be 
obtained as well. 

4. Kinematic simulation 

If all structural sized of the mechanism are given, and a=100mm, b=82.27mm, d1=95mm, 
d2=145mm, the virtual prototype model of the 2T1R PM is built by PRO/E software in Fig. 2. Then 
the model is imported to ADAMS software and the kinematics simulation can be realized easily. The 
prismatic pairs of the three chains are selected to the actuators, and their input functions are given, 
respectively, and l1=66.2+15*sin(100d*t), l2=67.4+40*sin(140d*t), l3=51.4+20*sin(120d*t). Time 
range is from 0 to 5 second. The generalized displacement, velocity and acceleration curves of the 
mechanism are solved (see Figs. 3-7). 

 

 
Fig. 2 The virtual prototype model of the 2T1R PM                              Fig. 3 displacement 
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Fig. 4 velocity                                                  Fig. 5 angular velocity 

 
Fig. 6 acceleration                                                   Fig. 7 angular acceleration 

5. Summary 

A new spatial parallel mechanism consisted of two RPS-type chains and one CPR-type chain. The 
moving platform has three DOFs i.e. two translation and one rotation. The number of the mobility is 
computed and the output motion characteristics of the parallel mechanism are analyzed based on the 
POC theory. The inverse and forward kinematic problems are discussed. According to the 
relationship between output and input, the robot has weak coupling property and is easy to complete 
real-time control. The virtual prototype is established based on PRO/E software and simulated by 
ADAMS software. The manipulator has widely potential applications in the fields of parallel machine 
tools, picking and packaging robots and micromanipulation robot. 
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