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Abstract. Online object tracking is a challenging issue because the appearance of an object tends to 
change due to intrinsic or extrinsic factors. In this study, we propose a robust tracking algorithm based 
on probabilistic hypergraph ranking and superpixels. The probabilistic hypergraph is constructed by 
mid-level visual cues and their spatial relationships. Then, the confidence map at mid-level cues is 
obtained by hypergraph ranking analysis, which takes the high order intrinsic relationships of 
superpixels into account. Third, Object tracking is formulated as a transductive learning issue, and the 
optimal target location is determined by maximum a posterior estimation on the ranking scores. Finally, 
a dynamic updating scheme is proposed to address appearance variations and alleviate tracking drift. A 
series of experiments and evaluations on various challenging sequences are performed, and the results 
show that the proposed algorithm performs favorably against other existing state-of-the-art methods.  

Introduction 
Object tracking is one of the most important issues in computer vision, which has been widely 

applied in surveillance, classification, activity analysis and recognition. Typically, a visual tracking 
system consists of four modules [1]: object initialization, appearance model, motion model, and object 
localization. In recent years, significant research has been performed regarding discriminative tracking 
methods [2-8]. These methods consider visual object tracking as a binary classification problem by 
identifying targets from backgrounds. Both classic and recent machine-learning algorithms are used to 
promote the performance of these tracking methods [2-8]. These methods generally assume that 
backgrounds and targets are separated linearly; however, this assumption is violated when the object 
undergoes significant changes in a real application. The classifier is constructed only by a few 
expensive labeled samples, and a large amount of unlabeled samples are abandoned. 

Graph-based transductive learning methods [9-14] study the intrinsic geometric structure of both 
labeled and unlabeled samples and can thus explore the affinity relationships among vertices. Zhang et 
al. [13] proposed a graph-based learning method for tracking in which a graph structure is designed to 
reflect the properties of the sample distributions. In [14], a graph-based transductive learning method 
was proposed in both variable indoor and outdoor scenes. However, these methods only consider the 
pairwise interactions between vertices [10,12]. In addition to the relationships of two individual 
vertices, their corresponding contexts, which contain local information, should be considered as well. 

Motivated by above-mentioned discussions, we present a robust tracking algorithm based on 
probabilistic hypergraph ranking and superpixels. We introduce hypergraph modeling into the 
object-tracking process for the first time. The probabilistic hypergraph is constructed by encoding the 
local affinity information of superpixels. Then, we formulate the object tracking problem as a 
transductive learning issue, and the optimal target location can be obtained by maximum a posterior 
estimation on the ranking scores. Finally, a dynamic updating scheme is proposed to address 
appearance variations and alleviate tracking drift. We conduct numerous experiments on challenge 
sequences to demonstrate the effectiveness of our proposed method. 
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Confidence map based on Probabilistic hypergraph ranking 
Hypergraph ranking [12] is a universal ranking algorithm used to rank samples along their high 

order intrinsic manifold structure. In this section, the confidence map at mid-level cues is computed by 
the hypergraph ranking to construct our discriminative appearance model. 
Probabilistic hypergraph ranking.  

Probabilistic hypergraph ( , , )G V E w=  is formed by a vertex set V , hyperedges E  which denotes a 
family of subsets e , and a positive hyperedge weight ( )w e . The incidence matrix H  of probabilistic 
hypergraph can be represented by: ( , ) ( , )i jh v e A i j= , if i jv e∈ , and ( , ) 0i jh v e = , otherwise, where 

( , )A i j  is a kernel function used for measuring the similarity between iv  and the ‘centroid’ vertex of 
the hyperedge je . The hypergraph weight ( )w e  can be defined as ( ) ( , )

j i

i
v e

w e A i j
∈

= ∑ . 

The degree of each vertex can be defined ( ) ( ) ( , )
e E

d v w e h v e
∈

= ∑ . For a hyperedge e E∈ , its degree 

is ( ) ( , )
v V

e h v eδ
∈

=∑ . We use vD , eD  and W  to denote diagonal matrices of the vertex degrees, the 

hyperedge degrees and the hyperedge weights, respectively. A hypergraph is constructed as show in 
Fig.2(b). 

To improve the effect of the feedback information and introduce the diagonal constraint, we defined 
the cost function ( )fΩ  as: 

22

,

1 ( ) ( , ) ( , ) ( ) ( )( ) ( )
2 ( ) ( ) ( )e E u v V v V

w e h u e h v e f u f vf u f y
e d u d vδ∈ ∈ ∈

Ω = − + −∑ ∑ ∑                     (1) 

where the vector y  is the indication vector , the f  is the assigned sample value to be learned, and u  
is a tradeoff parameter. Let 1 2 1 1 2T

v e vD HWD H D− − −Θ = , the result ranking function can be written as  
1(1 )( )f I yγ γ −= − − Θ                                                        (2) 

where 1 (1 )uγ = + . 
Confidence map based on superpixels.  

In our framework, surrounding area of the target is segmented into lots of superpixels [15] for 
representing the vertices. A Location-Adjacent Hypergraph ( , , )l l lG V E w=  is constructed in this paper. 
The location-adjacent hyperedge le  is composed of a ‘centroid’ superpixel and neighboring superpixels 
in image coordinate system. The vertices on the four sides of the surrounding area are considered to be 
adjacent.  

We use the Mean Shift algorithm [16] to generate the indicator vector y . The M  frames with the 
ground truth are collected for training. The surrounding area of the target is segmented into tN  
superpixels such as , ( 1,..., , 1,..., )t r tt M r N= =a . A feature pool ,{ | 1,..., , 1,..., }t r tF t M r N= = =a  is 

cluster into ( 1,..., )iCluter i n=  in feature space. The positive cluster ( 1,..., )jCluter j N+
+=  is defined 

as / ( 1)j jS S λ λ+ − > > , where S +  denotes that iCluter  contains the local areas inside the target area, 

and S −  represents the local areas outside the target area. Analogously, the negative cluster is 
( 1,..., )jCluter j N−

−=  if /j jS S λ+ − < . With a new test tM -th frame, the positive query set Q+  is 
obtained by k-NN classifier (k=1) based on the positive cluster: 

,
1,...,

{ | arg min( ( , )), 1,..., }.
t

t

j j M r j
r N

Q Q Q dis Cluter j N+ + + +
+

=
= = =a                   (3) 

The negative query set Q−  contains two parts: 1 2 .Q Q Q− − −= U  1Q−  is obtained from negative 
cluster, and 2Q−  is obtained from the boundary of surrounding area:  
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The indication vector y  can be defined as 1iy Q+= , if iv Q+∈ , 1iy Q−= − , if iv Q−∈ , and 

0iy = otherwise. The confidence map at superpixels can be computed by (2) (see Fig.1). 

 
Fig. 1 Process of creating confidence map. (a) warped image in a new frame; (b) the constructed probabilistic 

hypergraph based on superpixels; (c) positive query set and negative query set; (d) the final confidence map 
computed by hypergraph ranking. 

Proposed tracking Algorithm. 
The visual track problem can be considered as a Bayesian inference task in a Markov model 

[5,14,17,18] with hidden state variables. Given a set of observed images 1 2 1{ , ,... , }t t t−=Y y y y y  at the 
t -th frame, the hidden state tx  can be estimated:  

( | )t tp x Y ∝ 1 1 1 1( | ) ( | ) ( | )t t t t t t tp p p d− − − −∫y x x x x Y x                               (5) 

where ( | )t tp y x  is the observation model and the 1( | )t tp −x x  represents the dynamic model.  
We model the dynamic model between two consecutive frames with affine transformation. Let 

{ , , , , , }t t t t t t tx y sθ α φ=x , where , , , , ,t t t t t tx y sθ α φ  denote x , y  translation, rotation angle, scale, aspect 
ratio, and skew direction respectively. We use a random walk model for the state transition, i.e., 

1 1( | ) ( ; , )t t t tp N− −=x x x x Ψ , where Ψ  is a diagonal covariance matrix. 

 
Fig. 2 Proposed observation model. (a) warped image; (b) final confidence map; (c) the good target candidate is 

shown in red rectangle and others are bad target candidates. 
In confidence map, a good target candidate not only has a higher confidence value, but also covers 

more parts of foreground regions. The observation model (see Fig.2) is defined as: 

1
( , )

( | ) ( , ) ( )
i

i i i
t t t t

j k M
p f j k −

∈

= ×∑y x s s                                             (6) 

where i
ts  represents the real area size of target state i

tx .The optical target state ˆ tx  can be obtained by 
Maximum a Posteriori (MAP) estimation over samples: 
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1ˆ argmax ( | ) ( | )
i
t

i i i
t t t t t

x
p p −=x y x x x , 1,2,3,...,i N=                                       (7) 

where i
tx  is the i -th sample of the state tx . For every U  frames, a new frame is put into the training 

dataset and the oldest one is deleted. And we update the appearance model for clustering the feature 
pool for every W  frames. 

Experimental Results 
Our approach is implemented in MATLAB 2011 on a Core 2.0GHz Dual Core PC with 2 GB 

memory. Each image observation is normalized to 32 32×  pixels, and the number of samples is set to 
300. The surrounding region is set 1.5 times of the size of target area. The frames of training and the 
number of superpixels are set to 5 and 300. The threshold λ  is set to the range of 2 and 4, and the 
parameter γ  is set to 0.1. The update frequency W  is 8, and the spacing interval U  is 4. For 
comparison, we evaluate our tracker against seven state-of-art tracking methods on eight challenging 
sequences including the IVT[17], L1[18], MIL[6], Struck[7], OAB[2], SemiT[3] and PN algorithms 
[8]. Both qualitative and quantitative evaluations are presented in this section. 
Qualitative Comparison.  

pose 
The Lemming sequence as shown in Fig. 3(a), the proposed method, MIL and OAB perform better 

than the other methods. OAB and MIL methods work well as they select the most discriminative 
Haar-like features for object representation which can well handle pose variation and shape 
deformation. In the Bike sequence as shown in Fig. 3(b), IVT, L1 and SemiT perform poorly as the 
background has a seriously interfere. Compared to Sturck and OAB, our method distinguishes target 
parts from background blocks more precisely (#205).  

Occlusion 
Fig. 3(c) presents the tracking results on the Woman sequence with long-term partial occlusion 

(#0132, #0229). MIL tracker does not perform well as the generalized Haar-like features used in the 
tracker are less effective to occlusion. The proposed tracker and Struck tracker perform better than the 
other methods. Some tracking results on the Liquor sequence are shown in Fig. 3(d). Most methods 
fail to track the target well when the target undergoes occlusion (#606, #776). As our 
hypergraph-based discriminative appearance model learns the appearance model of both superpixels 
and their manifold structure, it is able to detect the target all heavy occlusions. 

Illumination change and scale change 
Figure 3 (e) presents the tracking results in the Singer1 sequence. The proposed method and TLD 

perform better than the other methods. OAB, SemiT and Struck trackers don’t adapt to scale change 
(#288), and L1 tracker achieves a high tracking error . Figure 3(f) presents the tracking results in the 
Carscale sequence with large scale variation. Most trackers drift away from the target when the objects 
with large scale variation. Our tracker outperforms other tracker as the proposed hypergraph-based 
discriminative appearance model making use of mid-level visual cues and their high order intrinsic 
structure.  
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(a)                                                                          (b) 

       
(b)                                                                          (d) 

       
(e)                                                                           (f) 

 
Fig. 3. Qualitative evaluation of seven algorithms on eight challenging image sequences. 

Qualitative Comparison.  
For quantitative evaluation, we employ two evaluation criteria to assess the performance of tracking 

algorithms.. The average center location errors are presented in Table 1. Our tracker achieves the 
lower drifting errors than the others tracking algorithms in almost all consequences. In addition, we 
employ the overlap rate [19] to evaluate the stability of each algorithm. Table 2 presents the average 
overlap rates. The success of our tracker can be attributed to the effective discriminative appearance 
model with mid-level visual representation. 

 
Table 1 Center location error (CLE) (in pixels). Bold fonts indicate the best performance. 
Image sequence IVT L1 MIL Struck OAB SmeiT TLD Ours 

Lemming 181 214 12.1 37.8 18.1 161 16.0 9.0 
Singer1 11.7 146 16.4 14.5 12.9 98.5 7.9 5.6 
Carscale 11.6 106 33.2 35.7 30.0 26.8 21.6 6.2 
Woman 163 124 116 3.6 34.7 19.5 130 9.5 
Liquor 118 244 141 91.0 68.6 64.2 37.6 15.6 
Bike 7.4 50.9 73.0 8.6 12.0 56.1 216 5.2 

 
Table 2 Overlap rate (ORE). Bold fonts indicate the best performance 

Image sequence IVT L1 MIL Struck OAB SmeiT TLD Ours 
Lemming 0.14 0.13 0.65 0.48 0.60 0.14 0.44 0.71 
Singer1 0.57 0.29 0.36 0.37 0.34 0.17 0.73 0.72 
Carscale 0.65 0.47 0.41 0.41 0.40 0.43 0.46 0.79 
Woman 0.18 0.18 0.19 0.76 0.48 0.39 0.16 0.69 
Liquor 0.23 0.20 0.22 0.42 0.45 0.51 0.52 0.76 
Bike 0.74 0.73 0.46 0.71 0.64 0.45 0.71 0.79 

 

Conclusion 
This paper presents a novel tracking algorithm based on probabilistic hypergraph ranking and 

superpixels. The object tracking is formulated as a transductive learning problem and the most target 
location is obtained by MAP estimation based on the confidence map. Both quantitative and qualitative 
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evaluations against several state-of-the-art algorithms demonstrate the accuracy and the robustness of 
the proposed tracker. 
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